Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linear coordination structures

Linear Linear coordination structures are formed by ligand-metal-ligand, or l M-L, bonding in a line. They are usually associated with CN of 2 and +1 cations, such as Cu, Ag, Au, and Hg2. Sometimes they occur for other transition metals when the ligands are extremely bulky, leaving room for only two ligands. Examples include BeH2, CO2, and HCN. [Pg.146]

The TCNQ molecule in [TR(bzim)]2-TCNQ is sandwiched between two units of [ J,-N, C -bzimAu]3 in a face-to-face manner so that it is best represented by the formula (7t-[ J,-N, C -bzimAu]3)( j,-TCNQ)(7t-[p-N, C -bzimAu]3). The cyanide groups clearly are not coordinated to the gold atoms. The distance between the centroid of TCNQ to the centroid of the AU3 unit is 3.964 A. The packing of [TR(bzim)]2-TCNQ shows a stacked linear-chain structure with a repeat pattern of-(Au3)(Au3)(p-TCNQ) (Au3)(Au3)(p-TCNQ)- an ABBABB repeat The complex [TR(bzim)]2-TCNQ contains two very short intermolecular Au Au distances of 3.152 A (identical for the two aurophilic bonds). The intermolecular Au Au distance is even shorter than the intramolecular distances in the starting compound, which are 3.475, 3.471, and 3.534 A. The adjacent AU3 units in [TR(bzim)]2-TCNQ form a chair-type structure rather than the face-to-face (nearly eclipsed) pattern reported in Balch s studies of the nitro-9-fluorenones adducts with the trinuclear Au(I) alkyl-substituted carbeniate complexes. [Pg.31]

NCS-carbon is shifted dowfield in the two first complexes. The amine complex shows a shift of the N—H signal which appears at 2.08 ppm in the free ligand and at 5.17 ppm when it is coordinated. The structure of the thiazole complex was studied by X-ray diffraction, confirming the almost linear coordination about the gold atom and showing that the ligands are almost co-planar. [Pg.101]

The reaction with PPh2CCH leads to the formation of [Au(QF5)(PPh2CCH)[ [53] whose P H NMR spectrum shows a singlet at 17.2ppm, in the H NMR spectrum the resonance of the C = CH proton is observed at 3.46 ppm. The IR spectrum shows, besides the pentafluorophenyl absorptions, a band at 3271 cm due to the V(Csch) and another absorption at 2056 cm for the asymmetric C = C stretch. The structure of this complex was studiedby X-ray diffraction, the Au(I) atom is an almost linearly coordinated and the Au—C and Au—P distances are in the range of the values found for similar complexes. The excitation and the emission data in the solid state at 77 K are 331 and 445 nm. [Pg.101]

When [AuTl(C6F5)2]n reacts with DMSO the complex [Tl2 Au(C6F5)2 2 lt-DMSO 3]n [126] is obtained. The crystal structure of this complex shows unsupported Au - Tl interactions that range from 3.2225(6) to 3.5182(8) A but there are no Tl- - - Tl interactions. There are Au- - - Au interactions of3.733 A and the gold centers are almost linearly coordinated to two pentafluorophenyl groups. The complex is strongly luminescent both at room temperature (emits at 440 nm (exc.390 nm)) and at 77 K (emits at 460 nm (exc. 360 nm)). [Pg.118]

The choice of metal ion in this work is interesting since it has been known for a considerable time that Ag+ is a rare example of a d-block metal ion that does not disrupt the duplex DNA structure (172,173). Rationalization of this effect has tended to focus on the possible base-pair crosslinking due to the preferred linear coordination geometry of Ag1 ions (174). The importance of Ag+ DNA coordination chemistry to the procedure described is not clear. However, reports that other metal ions, e.g., Pdri (175), can be plated to DNA to fabricate metallic wires (Fig. 51) suggests that this may not be essential. [Pg.141]

Fig. 22. Illustration100 of the structure of Al(0-2. h-t-Bu -MeCjHJj showing the almost linear coordination at the oxygen centers. Fig. 22. Illustration100 of the structure of Al(0-2. h-t-Bu -MeCjHJj showing the almost linear coordination at the oxygen centers.
The d9 species (OC)2NiCHO has been prepared by the reaction of H atoms with Ni(CO)4 in a krypton matrix at 77 K. The complex is not thermally interconvertible with its isomer, HNi(CO)3, and EPR spectroscopy reveals that components in the xy plane of the principal g-values gzz = 2.0024(2) and gxx = gyy = 2.0207(2) split at 4K. Hence, structure (1004) was proposed. 411 The oxides KNa2[Ni02] and K3[Ni02] contain Ni1 with virtually linear coordination.24 2... [Pg.496]

The copper-alkoxo unit, which is usually synthesized in situ, plays a significant role in metal-promoted transformations of organic substrates by copper(I). To determine the reaction form of the Cu-OPh unit, Floriani and co-workers structurally characterized four complexes (772) (pseudotetrahedral Cu-Cu 3.223 AT (773) (pseudotetrahedral), (774) ( anion linear coordination) and (775) (planar trigonal).57 Using 3,3,6,6-tetramethyl-l-thia-4-cycloheptyne as terminal ligand the structural characterization of a copper(I)-alkyne complex (776) (Cu-Cu 2.940 A) was reported.573... [Pg.892]

Coordination studies of acyclic thioether ligands to silver(I) centers has also been studied. Poly(alkylthio)aromatic systems have been used to form supramolecular silver(I) compounds. With the ligand 2,3,5,6-tetrakis(isopropylthio)benzoquinone the compound has a linear chain structure in which silver(I) has a tetrahedral coordination.1156 A similar structure has the compound with the hexakis(methylthio)benzene,1157 but with the hexakis(tolylthio)benzene the silver... [Pg.971]

The zinc complex of 1,1,1,5,5,5-hexafluoroacetylacetonate forms coordination polymers in reaction with either 2,5-bis(4-ethynylpyridyl)furan or l,2-bis(4-ethynylpyridyl)benzene. The X-ray crystal structures demonstrate an isotactic helical structure for the former and a syndio-tactic structure for the latter in the solid state. Low-temperature 1H and 19F NMR studies gave information on the solution structures of oligomers. Chiral polymers were prepared from L2Zn where L = 3-((trifluoromethyl)hydroxymethylene)-(+)-camphorate. Reaction with 2,5-bis(4-ethy-nylpyridyl)furan gave a linear zigzag structure and reaction with tris(4-pyridyl)methanol a homo-chiral helical polymer.479... [Pg.1187]

The most straightforward synthesis of compounds (L)AuAr uses the metathesis of (L)AuX precursors with aryllithium reagents, as, for example, executed for the preparation of (Ph3P)AuPh. The crystal structure of this benchmark complex has been determined. The linear coordination geometry is as expected. No aurophilic contacts are discernible in the crystal packing. Short Au- -Au contacts are observed, however, in the dinuclear compound (dppm)(AuPh)2 with an intramolecular intermetallic distance of 3.154(1) A. This complex shows a UV-VIS absorption at 290-300 nm and is luminescent in fluid solution at room temperature.1... [Pg.267]

Linear coordination complexes are also observed with carbenes rather than carbonyl ligands. However, recent structural work carried out on bis(carbene) complexes indicates that coordination of the counteranion can lead to significant deviation of the Ccalbene-Hg-Gcalbene angle from linearity. In 70, for example, the two chloride anions are... [Pg.446]

The reaction of dabco (l,4-diazobicyclo[2.2.2]octane) with Me2Cd yields a 1 1 adduct 197, which adopts a linear polymeric structure (Figure 34).255 The cadmium atom is coordinated by two dabco units and two methyl carbon atoms giving rise to a distorted tetrahedral environment. Finally, the organocadmium adduct 198 (Figure 35) has been isolated from the reaction of Me2Cd with Cd[(SeP-/-Pr2)2N]2.256 The solid-state structure consists of dimeric units where each methylcadmium unit is coordinated to three selenium atoms. The geometry about the cadmium center is tetrahedral with a Cd-C distance of 2.16 A, which is comparable to that observed in other cadmium alkyl complexes. [Pg.467]

In this equation rA is the radius of the cage site cation, rB is the radius of the octahedrally coordinated cation, and rx is the radius of the anion. The factor l is called the tolerance factor. Ideally, t should be equal to 1.0, and it has been found empirically that if t lies in the approximate range 0.9-1.0, a cubic perovskite structure is stable. However, some care must be exercised when using this simple concept. It is necessary to use ionic radii appropriate to the coordination geometry of the ions. Thus, rA should be appropriate to 12 coordination, rB to octahedral coordination, and rx to linear coordination. Within this limitation the tolerance factor has good predictive power. [Pg.458]


See other pages where Linear coordination structures is mentioned: [Pg.641]    [Pg.1189]    [Pg.191]    [Pg.14]    [Pg.25]    [Pg.280]    [Pg.283]    [Pg.115]    [Pg.32]    [Pg.107]    [Pg.112]    [Pg.117]    [Pg.117]    [Pg.286]    [Pg.367]    [Pg.372]    [Pg.425]    [Pg.605]    [Pg.876]    [Pg.930]    [Pg.959]    [Pg.1042]    [Pg.1043]    [Pg.198]    [Pg.223]    [Pg.72]    [Pg.299]    [Pg.302]    [Pg.40]    [Pg.843]    [Pg.393]    [Pg.707]    [Pg.270]   
See also in sourсe #XX -- [ Pg.146 ]




SEARCH



Coordination Structures

Linear structure

Linearize coordinates

© 2024 chempedia.info