Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lime precipitation, lithium brine

Recovery from Brines. Natural lithium brines are predominately chloride brines varying widely in composition. The economical recovery of lithium from such sources depends not only on the lithium content but on the concentration of interfering ions, especially calcium and magnesium. If the magnesium content is low, its removal by lime precipitation is feasible. Location and avadabiHty of solar evaporation (qv) are also important factors. [Pg.222]

Lithium may be recovered from natural chloride brines. Such recovery processes may require additional steps depending on the magnesium and calcium content of the brine. The process involves evaporation of brine, followed by removal of sodium chloride and interferring ions such as calcium and magnesium. Calcium is removed by precipitation as sulfate while magnesium is removed by treating the solution with lime upon which insoluble magnesium hydroxide separates out. Addition of sodium carbonate to the filtrate solution precipitates hthium carbonate. [Pg.488]

From the final pond the concentrated brine (Table 1.3) with a density of about 1.25 g/cc was pumped nearly 4.8 km (3 mi 1.5 mi in 1967, Gadsby, 1967) to the processing plant in the town of Silver Peak. The plant had been converted from a silver ore cyanide-leach plant that had operated there from 1864-1961. In the conversion all of the tanks and settlers were rubber lined to reduce iron contamination in the product, and considerable new equipment was added. The solar pond brine was first reacted with lime to remove most of the residual magnesium and some of the sulfate and borate ions, and then a small amount of soda ash was added to precipitate most of the calcium from the lime reactions. The slurry from these operations was settled and filtered, and the overflow solution sent to storage tanks. From there the brine was pumped through filter presses to be totally clarified, and then heated to 93°C (200°F lithium carbonate has an inverse solubility) and reacted with dry soda ash and hot wash and make-up waters to precipitate the lithium carbonate product. Extra water was added to prevent salt from crystallizing, since the pond brine was samrated with salt. The lithium carbonate slurry was thickened in a bank of cyclones, and the underflow fed to a vacuum belt filter where it was washed and dewatered. The cyclone overflow and filtrate were... [Pg.107]


See other pages where Lime precipitation, lithium brine is mentioned: [Pg.223]    [Pg.223]    [Pg.142]    [Pg.223]    [Pg.116]    [Pg.129]    [Pg.145]   
See also in sourсe #XX -- [ Pg.102 , Pg.103 , Pg.106 , Pg.107 , Pg.116 , Pg.117 , Pg.127 , Pg.129 , Pg.161 , Pg.162 , Pg.164 , Pg.170 ]




SEARCH



Brine

Brine precipitation

Brining

Lime precipitation

Liming

Lithium brine

© 2024 chempedia.info