Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lifetime experimental

T, are the fluorescence lifetimes. Experimentally, it is found that the anisotropy r(t) does not decay to zero in lipid bilayers but to a finite value rm (see Figure 5.2). [Pg.241]

It is always wise to check calculations of order from fractional lifetimes experimentally by making runs under conditions of different initial concentrations to avoid fortuitous errors. [Pg.81]

Barrier, Experimental (M mol ) Barrier, Calculated (kJ mol" ) Lifetime, Experimental (s) Lifetime, Calculated (s) Reference... [Pg.377]

A covalent bond (or particular nomial mode) in the van der Waals molecule (e.g. the I2 bond in l2-He) can be selectively excited, and what is usually observed experimentally is that the unimolecular dissociation rate constant is orders of magnitude smaller than the RRKM prediction. This is thought to result from weak coupling between the excited high-frequency intramolecular mode and the low-frequency van der Waals intemiolecular modes [83]. This coupling may be highly mode specific. Exciting the two different HE stretch modes in the (HF)2 dimer with one quantum results in lifetimes which differ by a factor of 24 [84]. Other van der Waals molecules studied include (NO)2 [85], NO-HF [ ], and (C2i J )2 [87]. [Pg.1030]

If there are no competing processes the experimental lifetime x should equal Tq. Most connnonly, other processes such as non-radiative decay to lower electronic states, quenching, photochemical reactions or... [Pg.1132]

Resolution at tire atomic level of surfactant packing in micelles is difficult to obtain experimentally. This difficulty is based on tire fundamentally amoriDhous packing tliat is obtained as a result of tire surfactants being driven into a spheroidal assembly in order to minimize surface or interfacial free energy. It is also based upon tire dynamical nature of micelles and tire fact tliat tliey have relatively short lifetimes, often of tire order of microseconds to milliseconds, and tliat individual surfactant monomers are coming and going at relatively rapid rates. [Pg.2587]

Here t. is the intrinsic lifetime of tire excitation residing on molecule (i.e. tire fluorescence lifetime one would observe for tire isolated molecule), is tire pairwise energy transfer rate and F. is tire rate of excitation of tire molecule by the external source (tire photon flux multiplied by tire absorjDtion cross section). The master equation system (C3.4.4) allows one to calculate tire complete dynamics of energy migration between all molecules in an ensemble, but tire computation can become quite complicated if tire number of molecules is large. Moreover, it is commonly tire case that tire ensemble contains molecules of two, tliree or more spectral types, and experimentally it is practically impossible to distinguish tire contributions of individual molecules from each spectral pool. [Pg.3020]

It can be seen from Table 1 that there are no individual steps that are exothermic enough to break carbon—carbon bonds except the termination of step 3a of —407.9 kJ/mol (—97.5 kcal/mol). Consequentiy, procedures or conditions that reduce the atomic fluorine concentration or decrease the mobiUty of hydrocarbon radical intermediates, and/or keep them in the soHd state during reaction, are desirable. It is necessary to reduce the reaction rate to the extent that these hydrocarbon radical intermediates have longer lifetimes permitting the advantages of fluorination in individual steps to be achieved experimentally. It has been demonstrated by electron paramagnetic resonance (epr) methods (26) that, with high fluorine dilution, various radicals do indeed have appreciable lifetimes. [Pg.275]

Formaldehyde is classified as a probable human carcinogen by the International Agency for Research on Cancer (lARC) and as a suspected human carcinogen by the American Conference of Governmental Industrial Hygienists (ACGIH). This is based on limited human evidence and on sufficient evidence in experimental animals (136). Lifetime inhalation studies with rodents have shown nasal cancer at formaldehyde concentrations that overwhelmed cellular defense mechanisms, ie, 6 to 15 ppm. No nasal cancer was seen at 2 ppm or lower levels (137). [Pg.496]

Since the authors did not succeed in obtaining an ESR spectrum, they were unable to decide whether the IV-pyrazolyl radical is of the a (112a) or the v (112b) type. Ab initio calculations indicate that the radical has Bi (rr) symmetry (76T1555). However, the radical is formed from (111) as a cr radical and is able to react as such in its lifetime. This is in agreement with the experimental results (75JOC915), no C-phenylated pyrazoles being detected. [Pg.206]

Direct photochemical excitation of unconjugated alkenes requires light with A < 230 nm. There have been relatively few studies of direct photolysis of alkenes in solution because of the experimental difficulties imposed by this wavelength restriction. A study of Z- and -2-butene diluted with neopentane demonstrated that Z E isomerization was competitive with the photochemically allowed [2tc + 2n] cycloaddition that occurs in pure liquid alkene. The cycloaddition reaction is completely stereospecific for each isomer, which requires that the excited intermediates involved in cycloaddition must retain a geometry which is characteristic of the reactant isomer. As the ratio of neopentane to butene is increased, the amount of cycloaddition decreases relative to that of Z E isomerization. This effect presumably is the result of the veiy short lifetime of the intermediate responsible for cycloaddition. When the alkene is diluted by inert hydrocarbon, the rate of encounter with a second alkene molecule is reduced, and the unimolecular isomerization becomes the dominant reaction. [Pg.769]

Thus, in order to reproduce the effect of an experimentally existing activation barrier for the scission/recombination process, one may introduce into the MC simulation the notion of frequency , lo, with which, every so many MC steps, an attempt for scission and/or recombination is undertaken. Clearly, as uj is reduced to zero, the average lifetime of the chains, which is proportional by detailed balance to Tbreak) will grow to infinity until the limit of conventional dead polymers is reached. In a computer experiment Lo can be easily controlled and various transport properties such as mean-square displacements (MSQ) and diffusion constants, which essentially depend on Tbreak) can be studied. [Pg.545]

Four parameters often used to determine a fireball s thermal-radiation hazard are the mass of fuel involved and the fireball s diameter, duration, and thermal-emissive power. Radiation hazards can then be calculated from empirical relations. For detailed calculations, additional information is required, including a knowledge of the change in the fireball s diameter with time, its vertical rise, and variations in the fireball s emissive power over its lifetime. Experiments have been performed, mostly on a small scale, to investigate these parameters. The relationships obtained for each of these parameters through experimental investigation are presented in later sections of this chapter. [Pg.161]


See other pages where Lifetime experimental is mentioned: [Pg.499]    [Pg.239]    [Pg.96]    [Pg.239]    [Pg.263]    [Pg.931]    [Pg.94]    [Pg.3054]    [Pg.221]    [Pg.422]    [Pg.499]    [Pg.239]    [Pg.96]    [Pg.239]    [Pg.263]    [Pg.931]    [Pg.94]    [Pg.3054]    [Pg.221]    [Pg.422]    [Pg.481]    [Pg.177]    [Pg.800]    [Pg.1132]    [Pg.1426]    [Pg.1869]    [Pg.2072]    [Pg.2073]    [Pg.2482]    [Pg.2494]    [Pg.568]    [Pg.4]    [Pg.11]    [Pg.141]    [Pg.153]    [Pg.158]    [Pg.547]    [Pg.515]    [Pg.400]    [Pg.423]    [Pg.121]    [Pg.491]    [Pg.91]    [Pg.112]    [Pg.336]    [Pg.442]    [Pg.408]   
See also in sourсe #XX -- [ Pg.181 ]




SEARCH



© 2024 chempedia.info