Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lewis acids, effect reactions

Appreciating the beneficial influences of water and Lewis acids on the Diels-Alder reaction and understanding their origin, one may ask what would be the result of a combination of these two effects. If they would be additive, huge accelerations can be envisaged. But may one really expect this How does water influence the Lewis-acid catalysed reaction, and what is the influence of the Lewis acid on the enforced hydrophobic interaction and the hydrogen bonding effect These are the questions that are addressed in this chapter. [Pg.44]

Studies of ligand effects on Lewis-acid catalysed reactions in water... [Pg.76]

The use of dienophile 5.1 also allows study of the effect of micelles on the Lewis-acid catalysed reaction. These studies are described in Section 5.2.2. and represent the first in-depth study of Lewis-acid catalysis in conjunction with micellar catalysis , a combination that has very recently also found application in synthetic organic chemistry . ... [Pg.132]

The rate of the Lewis-acid catalysed Diels-Alder reaction in water has been compared to that in other solvents. The results demonstrate that the expected beneficial effect of water on the Lewis-acid catalysed reaction is indeed present. However, the water-induced acceleration of the Lewis-add catalysed reaction is not as pronounced as the corresponding effect on the uncatalysed reaction. The two effects that underlie the beneficial influence of water on the uncatalysed Diels-Alder reaction, enforced hydrophobic interactions and enhanced hydrogen bonding of water to the carbonyl moiety of 1 in the activated complex, are likely to be diminished in the Lewis-acid catalysed process. Upon coordination of the Lewis-acid catalyst to the carbonyl group of the dienophile, the catalyst takes over from the hydrogen bonds an important part of the activating influence. Also the influence of enforced hydrophobic interactions is expected to be significantly reduced in the Lewis-acid catalysed Diels-Alder reaction. Obviously, the presence of the hydrophilic Lewis-acid diminished the nonpolar character of 1 in the initial state. [Pg.174]

As expected, the solvent has a significant effect on the endo-exo selectivity of the uncatalysed Diels-Alder reaction between 1 and 2. In contrast, the corresponding effect on the Lewis-acid catalysed reaction is small. There is no beneficial effect of water on the endo-exo selectivity of the catalysed Diels-Alder reaction. The endo-exo selectivity in water is somewhat diminished relative to that in ethanol and acetonitrile. [Pg.174]

Good Cram selectivity is observed for Lewis acid induced reactions between allylstannanes and aldehydes with alkyl-substituted a-chiral centers66,87. This enhanced Cram selectivity may be due to the effect of the Lewis acid on the trajectory of nucleophilic attack on the aldehyde66. [Pg.374]

Kobayashi has found that scandium triflate, Sc(OTf)3,36 and lanthanide triflate, Ln(OTf)3, are stable and can be used as Lewis catalysts under aqueous conditions. Many other Lewis acids have also been reported to catalyze Diels-Alder reactions in aqueous media. For example, Engberts reported37 that the cyclization reaction in Eq. 12.7 in an aqueous solution containing 0.010 M Cu(N03)2 is 250,000 times faster than that in acetonitrile and about 1,000 times faster than that in water alone. Other salts, such as Co2+, Ni2+, and Zn2+, also catalyze the reaction, but not as effectively as Cu2+. However, water has no effect on the endo-exo selectivity for the Lewis-acid catalyzed reaction. [Pg.380]

Indium trichloride349-351 is a mild Lewis acid that is effective for various kinds of Lewis-acid-catalyzed reactions such as Diels-Alder reactions (Scheme 85), aldol reactions, and Friedel Crafts reactions. Since indium trichloride is stable in water, several aqueous reactions have been investigated (Scheme 85) indium(III) triflate is also used as a Lewis acid. [Pg.436]

Related halomethylzinc alkoxides, which are monomeric in solution, were studied for their effectiveness in cyclopropanation reactions. The Lewis acid-catalyzed reaction is the only reaction pathway at low temperature and... [Pg.366]

Bromides are less reactive than the corresponding iodides in atom transfer processes. However, activated bromides such as diethyl bromomalonate [36] and bromomalonitrile [53] react with olefins under Et3B/02 initiation. Kha-rasch type reactions of bromotrichloromethane with alkenes are also initiated by Et3B/02 [41]. On the other hand, a remarkable Lewis acid effect was reported by Porter. Atom-transfer reactions of an a-bromooxazolidinone amide with alkenes are strongly favored in the presence of Lewis acids such as Sc(0Tf)3 or Yb(0Tf)3, this reaction was successively applied to the... [Pg.92]

The Lewis acid-base reaction leading to complex formation910 has been recently11 considered in relation to the role of solvation effects. Many scales of thermodynamic parameters have been suggested. The concept of donor number (DN) was proposed by Gutmann12, and defined as the AH (kcalmol-1) for the interaction of a basic solvent with SbCL in 1,2-dichloromethane at room temperature ... [Pg.381]

Considering that the activity of a Lewis acid depends strongly on the stability of the acid-base complex and that the complexation is notoriously hampered by chemically hard solvents like water, it is clear that reactions of bidentate dienophiles can be catalysed very efficiently36. Prototypical are the derivatives of 3-phenyl-l-(2-pyridyl)-2-propen-l-ones (vide infra). Their Diels-Alder reactions (Table 24) clearly show that the accelerating solvent effect of water is still present in the Lewis acid catalysed reactions, and that the Lewis acid activity is not necessarily hindered by the solvent301. While... [Pg.1076]

The potential activation of different Lewis acid catalysts and their load effect when used in combination with this solvent were explored, in order to determine the improvement of rates and selectivity to the endo and exo isomers. The list of Lewis acid catalysts included Li(OTf), Li(NTf2), Znl2, AICI3, BF3, HOTf, HNTf2, Ce(0Tf)4 5H20, Y(OTf)3, Sc(OTf)3, Sc(NTf2) and a blank without any Lewis acid. The reaction conditions were as follows 2.2 mmol of cyclopentadiene + 2.0 mmol of dienophile + 0.2 mol% of catalyst in 2 mL [hmim][BF4]. When no catalyst was added, the two ketones (R =Me-C=0 R2 = R3 = H and Ri=Et-C=0 R2 = R3 = H) showed modest activity ( 50% in 1 h) with endojexo selectivity = 85/15. Whereas acrolein showed modest activity (59% conversion in 2 h), methacrolein and crotonaldehyde were inert without a Lewis acid catalyst. Acrylonitrile and methyl acrylate underwent low conversions in 1 h (16-17%) whereas, N-phenylmaleimide, maleic anhydride and 2-methyl-1,4-benzoquinone showed complete reaction in 5 min with high endo isomer yields. [Pg.162]

A common and effective direct approach to unsubstituted or multiply substituted oxazolines is the Lewis acid catalyzed reaction of nitriles with amino alcohols in an alcoholic or aromatic solvent (chlorobenzene) at reflux. The most common Lewis acids employed include ZnCl2, ZnBr2, NiBr2, CuCl2, and kaolinitic clay. Microwave irradiation has also been reported to facilitate the transformation. Alternatively, the condensation can be carried out in the presence of catalytic amounts of potassium carbonate. The method works well for both aliphatic and aromatic nitriles, with retention of stereochemistry. Some representative examples from the recent literature are listed in Table 8.16 (Scheme 3 40),2 35.2oi-2i3... [Pg.384]


See other pages where Lewis acids, effect reactions is mentioned: [Pg.32]    [Pg.47]    [Pg.54]    [Pg.107]    [Pg.161]    [Pg.162]    [Pg.175]    [Pg.305]    [Pg.346]    [Pg.769]    [Pg.518]    [Pg.870]    [Pg.415]    [Pg.108]    [Pg.333]    [Pg.1074]    [Pg.400]    [Pg.357]    [Pg.127]    [Pg.16]    [Pg.267]    [Pg.126]    [Pg.412]    [Pg.141]    [Pg.141]    [Pg.127]    [Pg.144]    [Pg.1340]    [Pg.882]    [Pg.61]    [Pg.53]    [Pg.77]   
See also in sourсe #XX -- [ Pg.123 , Pg.125 ]

See also in sourсe #XX -- [ Pg.123 , Pg.124 ]

See also in sourсe #XX -- [ Pg.123 , Pg.124 ]




SEARCH



Diels-Alder reactions Lewis acid effects

Lewis acid catalyzed Diels—Alder reaction effect

Lewis acidity effect

Lewis acids, effect

Lewis reactions

© 2024 chempedia.info