Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lennard-Iones potential liquids

A model of immiscible Lennard-Jones atomic solvents has been used to study the adsorption of a diatomic solute [71]. Subsequently, studies of solute transfer have been performed for atoms interacting through Lennard-Jones potentials [69] and an ion crossing an interface between a polar and a nonpolar liquid [72]. In both cases the potential of mean force experienced by the solute was computed the results of the simulation were compared with the result from the transition state theory (TST) in the first case, and with the result from a diffusion equation in the second case. The latter comparison has led to the conclusion that the rate calculated from the molecular dynamics trajectories agreed with the rate calculated using the diffusion equation, provided the mean-force potential and the diffusion coefficient were obtained from the microscopic model. [Pg.261]

A complete set of intermolecular potential functions has been developed for use in computer simulations of proteins in their native environment. Parameters have been reported for 25 peptide residues as well as the common neutral and charged terminal groups. The potential functions have the simple Coulomb plus Lennard-Jones form and are compatible with the widely used models for water, TIP4P, TIP3P and SPC. The parameters were obtained and tested primarily in conjunction with Monte Carlo statistical mechanics simulations of 36 pure organic liquids and numerous aqueous solutions of organic ions representative of subunits in the side chains and backbones of proteins... [Pg.46]

Thermodynamic information can also be obtained from simulations. Currently we are measuring the differences in chemical potential of various small molecules in dimethylimidazolium chloride. This involves gradually transforming one molecule into another and is a computationally intensive process. One preliminary result is that the difference in chemical potential of propane and dimethyl ether is about 17.5 kj/mol. These molecules are similar in size, but differ in their polarity. Not surprisingly, the polar ether is stabilized relative to the non-polar propane in the presence of the ionic liquid. One can also investigate the local arrangement of the ions around the solute and the contribution of different parts of the interaction to the energy. Thus, while both molecules have a favorable Lennard-Jones interaction with the cation, the main electrostatic interaction is that between the chloride ion and the ether molecule. [Pg.161]

Stockmayer potential is considered as a superposition of a Lennard-Jones (6-12) potential and the interaction of two point dipoles. Many of the properties of gases and liquids have been calculated in terms of these two potential functions. It should be borne in mind, however, that Lennard-Jones and Stockmayer potentials are idealizations of the true energy of interaction and that they are reasonably accurate for a number of simple molecules. The interaction of long molecules, molecules in excited states, free radicals, and ions cannot be described by these two potential functions (Ref 8a, pp 23 35)... [Pg.282]

Recently, detailed molecular pictures of the interfacial structure on the time and distance scales of the ion-crossing event, as well as of ion transfer dynamics, have been provided by Benjamin s molecular dynamics computer simulations [71, 75, 128, 136]. The system studied [71, 75, 136] included 343 water molecules and 108 1,2-dichloroethane molecules, which were separately equilibrated in two liquid slabs, and then brought into contact to form a box about 4 nm long and of cross-section 2.17 nmx2.17 nm. In a previous study [128], the dynamics of ion transfer were studied in a system including 256 polar and 256 nonpolar diatomic molecules. Solvent-solvent and ion-solvent interactions were described with standard potential functions, comprising coulombic and Lennard-Jones 6-12 pairwise potentials for electrostatic and nonbonded interactions, respectively. While in the first study [128] the intramolecular bond vibration of both polar and nonpolar solvent molecules was modeled as a harmonic oscillator, the next studies [71,75,136] used a more advanced model [137] for water and a four-atom model, with a united atom for each of two... [Pg.327]


See other pages where Lennard-Iones potential liquids is mentioned: [Pg.243]    [Pg.548]    [Pg.226]    [Pg.13]    [Pg.434]    [Pg.158]    [Pg.693]    [Pg.371]    [Pg.137]    [Pg.166]    [Pg.193]    [Pg.16]    [Pg.83]    [Pg.2299]    [Pg.39]    [Pg.75]    [Pg.451]    [Pg.91]    [Pg.436]    [Pg.214]    [Pg.279]   
See also in sourсe #XX -- [ Pg.192 , Pg.193 , Pg.194 , Pg.195 , Pg.196 , Pg.197 , Pg.198 , Pg.199 , Pg.200 , Pg.201 , Pg.202 ]




SEARCH



Lennard

Lennard potential

Lennard-Iones potential

© 2024 chempedia.info