Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lennard chain

The behavior of insoluble monolayers at the hydrocarbon-water interface has been studied to some extent. In general, a values for straight-chain acids and alcohols are greater at a given film pressure than if spread at the water-air interface. This is perhaps to be expected since the nonpolar phase should tend to reduce the cohesion between the hydrocarbon tails. See Ref. 91 for early reviews. Takenaka [92] has reported polarized resonance Raman spectra for an azo dye monolayer at the CCl4-water interface some conclusions as to orientation were possible. A mean-held theory based on Lennard-Jones potentials has been used to model an amphiphile at an oil-water interface one conclusion was that the depth of the interfacial region can be relatively large [93]. [Pg.551]

Concluding this section, one should mention also the method of molecular dynamics (MD) in which one employs again a bead-spring model [33,70,71] of a polymer chain where each monomer is coupled to a heat bath. Monomers which are connected along the backbone of a chain interact via Eq. (8) whereas non-bonded monomers are assumed usually to exert Lennard-Jones forces on each other. Then the time evolution of the system is obtained by integrating numerically the equation of motion for each monomer i... [Pg.569]

Simulations of monolayers have focused on internal phase transitions, e.g., between the expanded phase and the condensed phases, between different tilted phases, etc. These phenomena cannot be reproduced by models with purely repulsive interactions. Therefore, Haas et al. [148,149] represent the amphiphiles as stiff Lennard-Jones chains, with one end (the head bead) confined to move in a plane. In later versions of the model [150-152], the head bead interactions differ from those of the tail beads they are taken to be purely repulsive, and the head size is variable. [Pg.649]

FIG. 8 Phase diagram of a Langmuir monolayer in a model of grafted stiff Lennard-Jones chains. LE denotes a disordered expanded phase, LC-U a condensed phase with untilted chains, LC-NN and LC-NNN condensed phases with collective tilt towards nearest neighbors and next-nearest neighbors, respectively, and LC-mod a phase which has a superstructure and an intermediate direction of tilt. (From Stadler and Schmid [151].)... [Pg.649]

A complete set of intermolecular potential functions has been developed for use in computer simulations of proteins in their native environment. Parameters have been reported for 25 peptide residues as well as the common neutral and charged terminal groups. The potential functions have the simple Coulomb plus Lennard-Jones form and are compatible with the widely used models for water, TIP4P, TIP3P and SPC. The parameters were obtained and tested primarily in conjunction with Monte Carlo statistical mechanics simulations of 36 pure organic liquids and numerous aqueous solutions of organic ions representative of subunits in the side chains and backbones of proteins... [Pg.46]

The system used in the simulations usually consists of solid walls and lubricant molecules, but the specific arrangement of the system depends on the problem under investigation. In early studies, hard spherical molecules, interacting with each other through the Lennard-Jones (L-J) potential, were adopted to model the lubricant [27], but recently we tend to take more realistic models for describing the lubricant molecules. The alkane molecules with flexible linear chains [28,29] and bead-spring chains [7,30] are the examples for the most commonly used molecular architectures. The inter- and intra-molecular potentials, as well as the interactions between the lubricant molecule and solid wall, have to be properly defined in order to get reliable results. Readers who intend to learn more about the specific techniques of the simulations are referred to Refs. [27-29]. [Pg.86]

Table 5.1 Parameters of the united atom force field for polyethylene used as the atomistic input for the coarse-graining procedure. The Lennard-Jones parameters pertain to CH2-group interaction, since chain ends were not considered in the coarse-graining. [Pg.120]

Fig. 6.7. Evolution of the sample averaged (R< ) as a function of MC time. The initial value of e(N) = C = 1.0 was changed to the values indicated after 600 MC steps. The indicated melt value corresponds to a comparable system with explicit chains with repulsive Lennard-Jones interactions and a number density of 0.85 cr-3 (from [45])... Fig. 6.7. Evolution of the sample averaged (R< ) as a function of MC time. The initial value of e(N) = C = 1.0 was changed to the values indicated after 600 MC steps. The indicated melt value corresponds to a comparable system with explicit chains with repulsive Lennard-Jones interactions and a number density of 0.85 cr-3 (from [45])...
Liang, H. J. Chen, H. N., First-order transition of a homopolymer chain with Lennard-Jones potential, J. Chem. Phys. 2000,113, 4469 1471... [Pg.386]

This approximation amounts to truncating the functional expansion of the excess free energy at second order in the density profile. This approach is accurate for Lennard-Jones fluids under some conditions, but has fallen out of favor because it is not capable of describing wetting transitions and coexisting liquid-vapor phases [105-107]. Incidentally, this approximation is identical to the hypemetted chain closure to the wall-OZ equation [103]. [Pg.119]

Figure 7 Comparison of melt structure factor and single-chain structure factor for PB (upper panel, calculated as scattering from the united atoms only) and a bead-spring melt (lower panel, in Lennard-Jones units). Figure 7 Comparison of melt structure factor and single-chain structure factor for PB (upper panel, calculated as scattering from the united atoms only) and a bead-spring melt (lower panel, in Lennard-Jones units).
In an early attempt to model the dynamics of the chromatin fiber, Ehrlich and Langowski [96] assumed a chain geometry similar to the one used later by Katritch et al. [89] nucleosomes were approximated as spherical beads and the linker DNA as a segmented flexible polymer with Debye-Huckel electrostatics. The interaction between nucleosomes was a steep repulsive Lennard-Jones type potential attractive interactions were not included. [Pg.413]

We now present results from molecular dynamics simulations in which all the chain monomers are coupled to a heat bath. The chains interact via the repiflsive portion of a shifted Lennard-Jones potential with a Lennard-Jones diameter a, which corresponds to a good solvent situation. For the bond potential between adjacent polymer segments we take a FENE (nonhnear bond) potential which gives an average nearest-neighbor monomer-monomer separation of typically a 0.97cr. In the simulation box with a volume LxL kLz there are 50 (if not stated otherwise) chains each of which consists of N -i-1... [Pg.164]


See other pages where Lennard chain is mentioned: [Pg.243]    [Pg.470]    [Pg.284]    [Pg.108]    [Pg.496]    [Pg.59]    [Pg.61]    [Pg.116]    [Pg.118]    [Pg.118]    [Pg.6]    [Pg.101]    [Pg.119]    [Pg.120]    [Pg.121]    [Pg.130]    [Pg.121]    [Pg.120]    [Pg.140]    [Pg.142]    [Pg.7]    [Pg.100]    [Pg.101]    [Pg.241]    [Pg.241]    [Pg.380]    [Pg.92]    [Pg.104]    [Pg.158]    [Pg.50]    [Pg.39]    [Pg.40]    [Pg.56]    [Pg.176]    [Pg.25]    [Pg.41]    [Pg.169]    [Pg.197]   
See also in sourсe #XX -- [ Pg.255 ]




SEARCH



Lennard

Lennard-Jones chains

© 2024 chempedia.info