Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laser pulses, quantum dynamics coherent states

The ability to create and observe coherent dynamics in heterostructures offers the intriguing possibility to control the dynamics of the charge carriers. Recent experiments have shown that control in such systems is indeed possible. For example, phase-locked laser pulses can be used to coherently amplify or suppress THz radiation in a coupled quantum well [5]. The direction of a photocurrent can be controlled by exciting a structure with a laser field and its second harmonic, and then varying the phase difference between the two fields [8,9]. Phase-locked pulses tuned to excitonic resonances allow population control and coherent destruction of heavy hole wave packets [10]. Complex filters can be designed to enhance specific characteristics of the THz emission [11,12]. These experiments are impressive demonstrations of the ability to control the microscopic and macroscopic dynamics of solid-state systems. [Pg.250]

The first volume contained nine state-of-the-art chapters on fundamental aspects, on formalism, and on a variety of applications. The various discussions employ both stationary and time-dependent frameworks, with Hermitian and non-Hermitian Hamiltonian constructions. A variety of formal and computational results address themes from quantum and statistical mechanics to the detailed analysis of time evolution of material or photon wave packets, from the difficult problem of combining advanced many-electron methods with properties of field-free and field-induced resonances to the dynamics of molecular processes and coherence effects in strong electromagnetic fields and strong laser pulses, from portrayals of novel phase space approaches of quantum reactive scattering to aspects of recent developments related to quantum information processing. [Pg.353]

Equation (7.75) defines what is meant by a so-called coherent sum of quantum states. The diagonal terms resemble the incoherent sum in Eq. (7.74) the values of the populations cn 2 are, however, determined by the laser pulse. The off-diagonal terms are called interference terms these terms are the key to quantum control. They are time dependent and we use the term coherent dynamics for the motion associated with the coherent excitation of quantum states. A particular simple form of Eq. (7.75) is obtained in the special case of two states. Then... [Pg.206]

Figure 5.4, one can easily understand why the interfacial electron transfer should take place in the 10-100 fsec range because this ET process should be faster than the photo-luminescence of the dye molecules and energy transfer between the molecules. Recently Zimmermann et al. [58] have employed the 20 fsec laser pulses to study the ET dynamics in the DTB-Pe/TiC>2 system and for comparison, they have also studied the excited-state dynamics of free perylene in toluene solution. Limited by the 20 fsec pulse-duration, from the uncertainty principle, they can only observe the vibrational coherences (i.e., vibrational wave packets) of low-frequency modes (see Figure 5.5). Six significant modes, 275, 360, 420, 460, 500 and 625 cm-1, have been resolved from the Fourier transform spectra of ultrashort pulse measurements. The Fourier transform spectrum has also been compared with the Raman spectrum. A good agreement can be seen (Figure 5.5). For detail of the analysis of the quantum beat, refer to Figures 5.5-5.7 of Zimmermann et al. s paper [58], These modes should play an important role not only in ET dynamics or excited-state dynamics, but also in absorption spectra. Therefore, the steady state absorption spectra of DTB-Pe, both in... Figure 5.4, one can easily understand why the interfacial electron transfer should take place in the 10-100 fsec range because this ET process should be faster than the photo-luminescence of the dye molecules and energy transfer between the molecules. Recently Zimmermann et al. [58] have employed the 20 fsec laser pulses to study the ET dynamics in the DTB-Pe/TiC>2 system and for comparison, they have also studied the excited-state dynamics of free perylene in toluene solution. Limited by the 20 fsec pulse-duration, from the uncertainty principle, they can only observe the vibrational coherences (i.e., vibrational wave packets) of low-frequency modes (see Figure 5.5). Six significant modes, 275, 360, 420, 460, 500 and 625 cm-1, have been resolved from the Fourier transform spectra of ultrashort pulse measurements. The Fourier transform spectrum has also been compared with the Raman spectrum. A good agreement can be seen (Figure 5.5). For detail of the analysis of the quantum beat, refer to Figures 5.5-5.7 of Zimmermann et al. s paper [58], These modes should play an important role not only in ET dynamics or excited-state dynamics, but also in absorption spectra. Therefore, the steady state absorption spectra of DTB-Pe, both in...
The dynamics of populations of the electronic states in a 4,4 -bis(dimethylamino) stilbene molecule (two-photon absorption) was studied against the frequency, intensity, and shape of the laser pulse [52]. Complete breakdown of the standard rotating wave for a two-photon absorption process was observed. An analytical solution for the interaction of a pulse with a three-level system beyond the rotating wave approximation was obtained in close agreement with the strict numerical solution of the amplitude equations. Calculations showed the strong role of the anisotropy of photoexcitation in the coherent control of populations that can affect the anisotropy of photobleaching. The two-photon absorption cross section of an ethanol solution of a trans-stilbene and its derivatives exposed to radiation of the second harmonic of a Nd YAG laser (532 nm) of nanosecond duration has been detected [53]. In experiments, the method based on the measurement of the photochemical decomposition of examined molecules was used. The quantum yield of the photoreaction (y266) of dyes under one-photon excitation (fourth harmonic Nd YAG laser 266 nm) was detected by absorption method. [Pg.174]

The events taking place in the RCs within the timescale of ps and sub-ps ranges usually involve vibrational relaxation, internal conversion, and photo-induced electron and energy transfers. It is important to note that in order to observe such ultrafast processes, ultrashort pulse laser spectroscopic techniques are often employed. In such cases, from the uncertainty principle AEAt Ti/2, one can see that a number of states can be coherently (or simultaneously) excited. In this case, the observed time-resolved spectra contain the information of the dynamics of both populations and coherences (or phases) of the system. Due to the dynamical contribution of coherences, the quantum beat is often observed in the fs time-resolved experiments. [Pg.6]


See other pages where Laser pulses, quantum dynamics coherent states is mentioned: [Pg.244]    [Pg.41]    [Pg.139]    [Pg.54]    [Pg.91]    [Pg.419]    [Pg.65]    [Pg.41]    [Pg.139]    [Pg.1793]    [Pg.346]    [Pg.347]    [Pg.13]    [Pg.16]    [Pg.17]    [Pg.224]    [Pg.228]    [Pg.1113]    [Pg.235]    [Pg.106]    [Pg.113]    [Pg.149]    [Pg.264]    [Pg.1775]   
See also in sourсe #XX -- [ Pg.261 , Pg.262 ]




SEARCH



Coherence/coherent states

Coherent pulse

Coherent states

Laser pulse

Lasers coherence

Quantum coherence

Quantum dynamical

Quantum dynamics

Quantum lasers

Quantum states

Quantum states coherence

State dynamical

© 2024 chempedia.info