Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crystal lanthanum

Separation Processes. The product of ore digestion contains the rare earths in the same ratio as that in which they were originally present in the ore, with few exceptions, because of the similarity in chemical properties. The various processes for separating individual rare earth from naturally occurring rare-earth mixtures essentially utilize small differences in acidity resulting from the decrease in ionic radius from lanthanum to lutetium. The acidity differences influence the solubiUties of salts, the hydrolysis of cations, and the formation of complex species so as to allow separation by fractional crystallization, fractional precipitation, ion exchange, and solvent extraction. In addition, the existence of tetravalent and divalent species for cerium and europium, respectively, is useful because the chemical behavior of these ions is markedly different from that of the trivalent species. [Pg.543]

Yttrium and lanthanum are both obtained from lanthanide minerals and the method of extraction depends on the particular mineral involved. Digestions with hydrochloric acid, sulfuric acid, or caustic soda are all used to extract the mixture of metal salts. Prior to the Second World War the separation of these mixtures was effected by fractional crystallizations, sometimes numbered in their thousands. However, during the period 1940-45 the main interest in separating these elements was in order to purify and characterize them more fully. The realization that they are also major constituents of the products of nuclear fission effected a dramatic sharpening of interest in the USA. As a result, ion-exchange techniques were developed and, together with selective complexation and solvent extraction, these have now completely supplanted the older methods of separation (p. 1228). In cases where the free metals are required, reduction of the trifluorides with metallic calcium can be used. [Pg.945]

Lanthanides Elements 57 (La) through 70 (Yb) in the periodic table, 146 Lanthanum, 147 Laser fusion, 528 Lattices in ionic crystals, 249 Lavoisier, Antoine, 14 Law of conservation of energy A natural law stating that energy can neither be created nor destroyed it can only be converted from one form to another, 214... [Pg.690]

A single crystal electrode is exemplified by the lanthanum fluoride electrode in which a crystal of lanthanum fluoride is sealed into the bottom of a plastic container to produce a fluoride ion electrode. The container is charged with a... [Pg.559]

The lanthanum fluoride crystal is a conductor for fluoride ions which being small can move through the crystal from one lattice defect to another, and equilibrium is established between the crystal face inside the electrode and the internal solution. Likewise, when the electrode is placed in a solution containing fluoride ions, equilibrium is established at the external surface of the crystal. In general, the fluoride ion activities at the two faces of the crystal are different and so a potential is established, and since the conditions at the internal face are constant, the resultant potential is proportional to the fluoride ion activity of the test solution. [Pg.560]

Reaction of lanthanum with Hg(CgF5)2 and bulky N,N -bis(2,6-diisopropyl-phenyl)-formamidine (FlDippEorm) in THF (Scheme 65) afforded (DippEorm)2LaF (THF) with a rare terminal La-E bond (colorless crystals, 77% yield). A novel... [Pg.232]

Fig. 8.12 Crystal structure (a), band structure of La3(B2N4) (b), and orbital interactions along [B2N4] stacks (c) (interactions with lanthanum orbitals are omitted for clarity). Fig. 8.12 Crystal structure (a), band structure of La3(B2N4) (b), and orbital interactions along [B2N4] stacks (c) (interactions with lanthanum orbitals are omitted for clarity).
Analysis of the lanthanide-induced crystalline arrays by negative staining (Fig. 5) or freeze-fracture electron microscopy reveals obliquely oriented rows of particles, corresponding to individual Ca -ATPase molecules [119]. The unit cell dimensions for the gadolinium-induced Ca -ATPase crystals are a = 6. l A, b = 54.4 A and y = 111°. Similar cell constants were obtained for the crystals induced by lanthanum, praseodymium and calcium. The unit cell dimensions of the Ei crystals are consistent with a single Ca -ATPase monomer per unit cell. The space group of the Eptype crystals is PI [119], while that of the E2 crystals is P2 [88,90]. [Pg.73]

The difference in catalytic activity between the La- and the Ba-based hexa-aluminates results from the following reasons the first difference is the valence of cation in the mirror pleuie between tri-valent lanthanum ion and di-valent barium ion. The second is the crystal structure between magnetoplumbite and P-alumina, which are different in the coordination of ions and concentration of Frenkel-type defect in mirror plane. The redox cycle of transition metal in hexa-aluminate lattice, which closely related with catalytic activity, is affected sensitively with these two factors. [Pg.424]

All ion-exchanger membranes with fixed ion-exchanger sites are porous to a certain degree (in contrast to liquid membranes and to membranes of ion-selective electrodes based on solid or glassy electrolytes, such as a single crystal of lanthanum fluoride). [Pg.426]

Figure 10.7 illustrates the prototype hexaboride crystal structure, that of lanthanum hexaboride. It consists of a simple cubic array of boron octahedra surrounding a metal atom at the body center of each cube. The octahedra are linked by B-B bonds connecting their comers. This makes the overall structure relatively hard with approximately the hardness of boron itself since plastic shear must break B-B bonds. The open volumes surrounded by boron octahedra are occupied by the relatively large lanthanum atoms as the figure shows schematically. [Pg.138]

Figure 10.7 Crystal structure of Lanthanum Hexaboride (prototypre hexaboride). The black circles represent boron octahedra. They form a simple cubic arrangement surrounding the central metal atom. Figure 10.7 Crystal structure of Lanthanum Hexaboride (prototypre hexaboride). The black circles represent boron octahedra. They form a simple cubic arrangement surrounding the central metal atom.
An alternative version of the lanthanum hexaboride crystal structure has the boron octahedra occupying the body centered positions of the cubic array of lanthanum atoms (Figure 10.8). This version makes it clear that in order to plastically shear the structure, the boron octahedra must be sheared. Note that the octahedra are linked together both internally and externally by B-B bonds. [Pg.139]

Figure 10.8 Alternative drawing of the crystal structure of Lanthanum Hexaboride with the metal atoms occupying the cube corners. Figure 10.8 Alternative drawing of the crystal structure of Lanthanum Hexaboride with the metal atoms occupying the cube corners.
These incorporate membranes fabricated from insoluble crystalline materials. They can be in the form of a single crystal, a compressed disc of micro-crystalline material or an agglomerate of micro-crystals embedded in a silicone rubber or paraffin matrix which is moulded in the form of a thin disc. The materials used are highly insoluble salts such as lanthanum fluoride, barium sulphate, silver halides and metal sulphides. These types of membrane show a selective and Nemstian response to solutions containing either the cation or the anion of the salt used. Factors to be considered in the fabrication of a suitable membrane include solubility, mechanical strength, conductivity and resistance to abrasion or corrosion. [Pg.238]

At low concentrations of the lanthanum dopant, the vacancies appear to be distributed at random over the available anion sites. However, as the concentration of La3+ and hence of vacancies increases, both tend to order in the crystal. [Pg.143]

The formula (5.14) has been applied, for example, by Hutchison and McKay144 to determine the proton coordinates in Nd(III)-doped lanthanum nicotinate dihydrate crystals, and by Balmer et al.101) to localize the charge compensator H+ in Co(II)-doped a-Al203. [Pg.53]

Example Fluoride-ion Electrode In this particular instance the membrane essentially comprises of a single crystal of lanthanum fluoride (LaF3), usually doped with a slight trace of europium (II), Eu2+, so as to initiate the crystal defects required for establishing its electrical conductivity. Therefore, the potential developed at each surface of the membrane is finally determined by the exact status of the equilibrium ... [Pg.246]

Perovskites, 27 358 band structure, 38 131-132 crystal structure, 38 123-125 Perovskite-type oxides see also specific lanthanum-based catalysts actinide storage in radioactive waste, 36 315-316... [Pg.173]


See other pages where Crystal lanthanum is mentioned: [Pg.233]    [Pg.68]    [Pg.22]    [Pg.111]    [Pg.233]    [Pg.68]    [Pg.22]    [Pg.111]    [Pg.175]    [Pg.127]    [Pg.540]    [Pg.337]    [Pg.340]    [Pg.1230]    [Pg.955]    [Pg.278]    [Pg.401]    [Pg.58]    [Pg.420]    [Pg.295]    [Pg.165]    [Pg.367]    [Pg.238]    [Pg.150]    [Pg.156]    [Pg.160]    [Pg.74]    [Pg.104]    [Pg.326]    [Pg.177]    [Pg.152]   


SEARCH



Crystal lanthanum trichloride

Lanthanum crystal field parameters

Lanthanum hexaboride crystal

Lanthanum, crystal structure

© 2024 chempedia.info