Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Lactic acid chirality

Lactic acid can be isolated from sour milk. Is lactic acid chiral ... [Pg.1039]

Propanoic acid (achiral) Lactic acid (chiral)... [Pg.310]

A molecule is chiral if it cannot be superimposed on its mirror image (or if it does not possess an alternating axis of symmetry) and would exhibit optical activity, i.e. lead to the rotation of the plane of polarization of polarized light. Lactic acid, which has the structure (2 mirror images) shown exhibits molecular chirality. In this the central carbon atom is said to be chiral but strictly it is the environment which is chiral. [Pg.91]

An example of a chiral compound is lactic acid. Two different forms of lactic acid that are mirror images of each other can be defined (Figure 2-69). These two different molecules are called enantiomers. They can be separated, isolated, and characterized experimentally. They are different chemical entities, and some of their properties arc different (c.g., their optical rotation),... [Pg.77]

Figure 2-69. The two enantiomers of lactic acid assignment of R and S configurations to the enantiomers of lactic acid after ranking the four ligands attached to the chiral center according to the Cl P rules (OH > COjH > Me > H). Figure 2-69. The two enantiomers of lactic acid assignment of R and S configurations to the enantiomers of lactic acid after ranking the four ligands attached to the chiral center according to the Cl P rules (OH > COjH > Me > H).
The enzyme is a single enantiomer of a chiral molecule and binds the coenzyme and substrate m such a way that hydride is transferred exclusively to the face of the carbonyl group that leads to (5) (+) lactic acid Reduction of pyruvic acid m the absence of an enzyme however say with sodium borohydride also gives lactic acid but as a racemic mixture containing equal quantities of the R and S enantiomers... [Pg.735]

Chiral Center. The chiral center, which is the chiral element most commonly met, is exemplified by an asymmetric carbon with a tetrahedral arrangement of ligands about the carbon. The ligands comprise four different atoms or groups. One ligand may be a lone pair of electrons another, a phantom atom of atomic number zero. This situation is encountered in sulfoxides or with a nitrogen atom. Lactic acid is an example of a molecule with an asymmetric (chiral) carbon. (See Fig. 1.13b.)... [Pg.46]

FIGURE 1.13 Asymmetric (chiral) carbon in the lactic acid molecule. [Pg.46]

Most of the chiral membrane-assisted applications can be considered as a modality of liquid-liquid extraction, and will be discussed in the next section. However, it is worth mentioning here a device developed by Keurentjes et al., in which two miscible chiral liquids with opposing enantiomers of the chiral selector flow counter-currently through a column, separated by a nonmiscible liquid membrane [179]. In this case the selector molecules are located out of the liquid membrane and both enantiomers are needed. The system allows recovery of the two enantiomers of the racemic mixture to be separated. Thus, using dihexyltartrate and poly(lactic acid), the authors described the resolution of different drugs, such as norephedrine, salbu-tamol, terbutaline, ibuprofen or propranolol. [Pg.15]

A molecule that has a plane of symmetry in any of its possible conformations must be identical to its mirror image and hence must be nonchiraJ, or achiral. Thus, propanoic acid, CH3CH2CO2H, has a plane of symmetry when lined up as shown in Figure 9.4 and is achiral, while lactic acid, CH3CH(0H)C02H, has no plane of symmetry in any conformation and is chiral. [Pg.291]

Figure 9.4 The achiral propanoic acid molecule versus the chiral lactic acid molecule. Propanoic acid has a plane of symmetry that makes one side of the molecule a mirror image of the other side. Lactic acid has no such symmetry plane. Figure 9.4 The achiral propanoic acid molecule versus the chiral lactic acid molecule. Propanoic acid has a plane of symmetry that makes one side of the molecule a mirror image of the other side. Lactic acid has no such symmetry plane.
The most common, although not the only, cause of chirality in an organic molecule is the presence of a carbon atom bonded to four different groups—for example, the central carbon atom in lactic acid. Such carbons are now referred to as chirality centers, although other terms such as stereocenter asymmetric center, and stereogenic center have also been used formerly. Note that chirality is a property of the entire molecule, whereas a chirality center is the cause of chirality. [Pg.292]

Molecules like lactic acid, alanine, and glyceraldehyde are relatively simple because each has only one chirality center and only two stereoisomers. The situation becomes more complex, however, with molecules that have more than one chirality center. As a general rule, a molecule with n chirality centers can have up to 2n stereoisomers (although it may have fewer, as we ll see shortly). Take the amino acid threonine (2-amino-3-hydroxybutanoic acid), for example. Since threonine has two chirality centers (C2 and C3), there are four possible stereoisomers, as shown in Figure 9.10. Check for yourself that the R,S configurations are correct. [Pg.302]

To understand how this method of resolution works, let s see what happens when a racemic mixture of chiral acids, such as (+)- and (-)-lactic acids, reacts with an achiral amine base, such as methylamine, CH3NH2. Stereochemically, the situation is analogous to what happens when left and right hands (chiral) pick up a ball (achiral). Both left and right hands pick up the ball equally well, and the products—ball in right hand versus ball in left hand—are mirror images. In the same way, both ( H- and (-)-lactic acid react with methylamine equally... [Pg.307]

Except for their effect on plane-polarized light, two enantiomers of a chiral compound have identical physical properties. For example, the two isomers of lactic acid shown below have the same melting point, 52°C, and density, 1.25 g/mL. [Pg.601]

Polylactides, 18 Poly lactones, 18, 43 Poly(L-lactic acid) (PLLA), 22, 41, 42 preparation of, 99-100 Polymer age, 1 Polymer architecture, 6-9 Polymer chains, nonmesogenic units in, 52 Polymer Chemistry (Stevens), 5 Polymeric chiral catalysts, 473-474 Polymeric materials, history of, 1-2 Polymeric MDI (PMDI), 201, 210, 238 Polymerizations. See also Copolymerization Depolymerization Polyesterification Polymers Prepolymerization Repolymerization Ring-opening polymerization Solid-state polymerization Solution polymerization Solvent-free polymerization Step-grown polymerization processes Vapor-phase deposition polymerization acid chloride, 155-157 ADMET, 4, 10, 431-461 anionic, 149, 174, 177-178 batch, 167 bulk, 166, 331 chain-growth, 4 continuous, 167, 548 coupling, 467 Friedel-Crafts, 332-334 Hoechst, 548 hydrolytic, 150-153 influence of water content on, 151-152, 154... [Pg.597]

Conversion at the chiral center if the mechanism is known. Thus, the Sn2 mechanism proceeds with inversion of configuration at an asymmetric carbon (see p. 390) It was by a series of such transformations that lactic acid was related to alanine ... [Pg.142]

Simple 1,2,4-triazole derivatives played a key role in both the synthesis of functionalized triazoles and in asymmetric synthesis. l-(a-Aminomethyl)-1,2,4-triazoles 4 could be converted into 5 by treatment with enol ethers <96SC357>. The novel C2-symmetric triazole-containing chiral auxiliary (S,S)-4-amino-3,5-bis(l-hydroxyethyl)-l,2,4-triazole, SAT, (6) was prepared firmn (S)-lactic acid and hydrazine hydrate <96TA1621>. This chiral auxiliary was employed to mediate the diastereoselective 1,2-addition of Grignard reagents to the C=N bond of hydrazones. The diastereoselective-alkylation of enolates derived from ethyl ester 7 was mediated by a related auxiliary <96TA1631>. [Pg.162]

The achiral hydroxyacetic acid molecule versus the chiral lactic acid molecule ... [Pg.189]

Poly(lactic acid) (PLA) has also been added to poly(SA) via melt polycondensation to produce the triblock copolymers poly(lactic acid-Wock-sebacic acid-Wock-lactic acid) (P(LA-block-SA-block-LA)) by Slivniak and Domb (2002). The PLA (d-, l-, and dl-) was incorporated by acetylation and addition to the PSA synthesis. They showed the formation of stable stereocomplexed particles with increased melting points and reduced solubility, and studied the degradation and drug release characteristics of the same (Slivniak and Domb, 2002). The stereocomplexes self-assemble as a consequence of the chirality in the PLA portions of the chains (Slivniak and Domb, 2002). [Pg.186]

Enantiomers have identical chemical and physical properties in the absence of an external chiral influence. This means that 2 and 3 have the same melting point, solubility, chromatographic retention time, infrared spectroscopy (IR), and nuclear magnetic resonance (NMR) spectra. However, there is one property in which chiral compounds differ from achiral compounds and in which enantiomers differ from each other. This property is the direction in which they rotate plane-polarized light, and this is called optical activity or optical rotation. Optical rotation can be interpreted as the outcome of interaction between an enantiomeric compound and polarized light. Thus, enantiomer 3, which rotates plane-polarized light in a clockwise direction, is described as (+)-lactic acid, while enantiomer 2, which has an equal and opposite rotation under the same conditions, is described as (—)-lactic acid. [Pg.5]

As we have seen a stereoselective reaction is one in which there is a preponderance of one isomer irrespective of the stereochemistry of the reactant. The enzymatic reduction of pyruvic acid is stereoselective when the chiral molecules of the enzyme complexes with achiral pyruvic acid, they given a preponderance of one form of pyruvic acid-enzyme complex which then gives a single form of lactic acid. [Pg.148]


See other pages where Lactic acid chirality is mentioned: [Pg.189]    [Pg.292]    [Pg.306]    [Pg.2028]    [Pg.189]    [Pg.292]    [Pg.306]    [Pg.2028]    [Pg.189]    [Pg.515]    [Pg.73]    [Pg.93]    [Pg.309]    [Pg.142]    [Pg.510]    [Pg.135]    [Pg.85]    [Pg.220]    [Pg.578]    [Pg.6]    [Pg.26]    [Pg.280]    [Pg.353]    [Pg.49]   
See also in sourсe #XX -- [ Pg.162 , Pg.163 ]




SEARCH



Chiral acids

Lactic acid, chiral methyl

© 2024 chempedia.info