Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

L-Phenylalanine biosynthesis

Figure 2. Alternative enzymatic routing for L-phenylalanine biosynthesis. Dehydration followed by transamination defines the phenylpyruvate route, whereas the reverse order of reactions defines the arogenate route. Abbreviations GLU, L-glutamate aKG, 2-ketoglutarate. Figure 2. Alternative enzymatic routing for L-phenylalanine biosynthesis. Dehydration followed by transamination defines the phenylpyruvate route, whereas the reverse order of reactions defines the arogenate route. Abbreviations GLU, L-glutamate aKG, 2-ketoglutarate.
The earliest references to cinnamic acid, cinnamaldehyde, and cinnamyl alcohol are associated with thek isolation and identification as odor-producing constituents in a variety of botanical extracts. It is now generally accepted that the aromatic amino acid L-phenylalanine [63-91-2] a primary end product of the Shikimic Acid Pathway, is the precursor for the biosynthesis of these phenylpropanoids in higher plants (1,2). [Pg.173]

H. Gagnon, 3. Seguin, E. Bleichert, S. Tahara, and R. K. Ibrahim, Biosynthesis of white lupin isoflavonoids from (U- C]L-phenylalanine and their release into the culture medium. Plant Physiol. 100 16 (1992). [Pg.82]

Tyrosine hydroxylase is the rate-limiting enzyme for the biosynthesis of catecholamines. Tyrosine hydroxylase (TH) is found in all cells that synthesize catecholamines and is a mixed-function oxidase that uses molecular oxygen and tyrosine as its substrates and biopterin as its cofactor [1], TH is a homotetramer, each subunit of which has a molecular weight of approximately 60,000. It catalyzes the addition of a hydroxyl group to the meta position of tyrosine, thus forming 3,4-dihydroxy-L-phenylalanine (l-DOPA). [Pg.212]

WITTSTOCK, U., HALKIER, B.A., Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzylglucosinolate, J. Biol. Chem., 2000,275,14659-14666. [Pg.142]

Figure 3.5 The primary pathway to the biosynthesis of the lignin precursors L-tyrosine and L-phenylalanine. Figure 3.5 The primary pathway to the biosynthesis of the lignin precursors L-tyrosine and L-phenylalanine.
Fig. 2. Schematic representation of paclitaxel biosynthesis. Dimethylallyl-diphosphate and isopentenyl-diphosphate are condensed through geranylgeranyl diphosphate synthase activity to render geranylgeranyl-diphosphate (GGPP). GGPP is converted into taxa-4(5), 11 (12)-diene in a reaction catalyzed by the taxane synthase (TS). A series of reactions catalyzed by cytochrome P450 monoxygenases lead to the production of a taxane intermediate that is further converted to baccatin III through enzymes-driven oxidation and oxetane ring formation. The side chain moiety of paclitaxel is derived from L-phenylalanine. Three consecutive arrows mean multiple steps. Ac, acetyl Bz, benzoyl. Fig. 2. Schematic representation of paclitaxel biosynthesis. Dimethylallyl-diphosphate and isopentenyl-diphosphate are condensed through geranylgeranyl diphosphate synthase activity to render geranylgeranyl-diphosphate (GGPP). GGPP is converted into taxa-4(5), 11 (12)-diene in a reaction catalyzed by the taxane synthase (TS). A series of reactions catalyzed by cytochrome P450 monoxygenases lead to the production of a taxane intermediate that is further converted to baccatin III through enzymes-driven oxidation and oxetane ring formation. The side chain moiety of paclitaxel is derived from L-phenylalanine. Three consecutive arrows mean multiple steps. Ac, acetyl Bz, benzoyl.
The tightly regulated pathway specifying aromatic amino acid biosynthesis within the plastid compartment implies maintenance of an amino acid pool to mediate regulation. Thus, we have concluded that loss to the cytoplasm of aromatic amino acids synthesized in the chloroplast compartment is unlikely (13). Yet a source of aromatic amino acids is needed in the cytosol to support protein synthesis. Furthermore, since the enzyme systems of the general phenylpropanoid pathway and its specialized branches of secondary metabolism are located in the cytosol (17), aromatic amino acids (especially L-phenylalanine) are also required in the cytosol as initial substrates for secondary metabolism. The simplest possibility would be that a second, complete pathway of aromatic amino acid biosynthesis exists in the cytosol. Ample precedent has been established for duplicate, major biochemical pathways (glycolysis and oxidative pentose phosphate cycle) of higher plants that are separated from one another in the plastid and cytosolic compartments (18). Evidence to support the hypothesis for a cytosolic pathway (1,13) and the various approaches underway to prove or disprove the dual-pathway hypothesis are summarized in this paper. [Pg.91]

Figure 4. The L-phenylalanine-cinnamate pathway for biosynthesis and biodegradation of veratryl alcohol in the white-rot fungus Phanerochaete chrysosporium. Figure 4. The L-phenylalanine-cinnamate pathway for biosynthesis and biodegradation of veratryl alcohol in the white-rot fungus Phanerochaete chrysosporium.
From L-tyrosine, or alternatively from L-phenylalanine, there is one further alkaloid biosynthesis pathway. This is the galanthamine pathway (Figure 38). Galanthamine synthesizes with tyramine, norbelladine, lycorine, crinine, N-demethylnarwedine and Al-demethylgalanthamine. Schiff base and reduction reaction, oxidative coupling and enzyme NADPH and SAM activity occur in this pathway. Schiff base is a reaction for the ehmination of water in formation with the C—N bonds process. [Pg.78]

Although L-phenylalanine is a protein amino acid, and is known as a protein acid type of alkaloid precursor, its real role in biosynthesis (providing C and N atoms) only relates to carbon atoms. L-phenylalanine is a part of magic 20 (a term deployed by Crick in his discussion of the genetic code) and just for this reason should also be listed as a protein amino acid type of alkaloid precursor, although its duty in alkaloid synthesis is not the same as other protein amino acids. However, in relation to magic 20 it is necessary to observe that only part of these amino acids are well-known alkaloid precursors. They are formed from only two amino acid families Histidine and Aromatic and the Aspartate family . [Pg.93]

Proanthocyanidins and Procyanidins - In a classical study Bate-Smith ( ) used the patterns of distribution of the three principal classes of phenolic metabolites, which are found in the leaves of plants, as a basis for classification. The biosynthesis of these phenols - (i) proanthocyanidins (ii) glycosylated flavonols and (iii) hydroxycinnamoyl esters - is believed to be associated with the development in plants of the capacity to synthesise the structural polymer lignin by the diversion from protein synthesis of the amino-acids L-phenylalanine and L-tyro-sine. Vascular plants thus employ one or more of the p-hydroxy-cinnarayl alcohols (2,3, and 4), which are derived by enzymic reduction (NADH) of the coenzyme A esters of the corresponding hydroxycinnamic acids, as precursors to lignin. The same coenzyme A esters also form the points of biosynthetic departure for the three groups of phenolic metabolites (i, ii, iii), Figure 1. [Pg.124]

The shikimate/arogenate pathway leads to the formation of three aromatic amino acids L-phenylalanine, L-tyrosine, and L-tryptophane. This amino acids are precursors of certain homones (auxins) and of several secondary compounds, including phenolics [6,7]. One shikimate/arogenate is thought to be located in chloroplasts in which the aromatic amino acids are produced mainly for protein biosynthesis, whereas the second is probably membrane associated in the cytosol, in which L-phenylalanine is also produced for the formation of the phenylpropanoids [7]. Once L-phenylalanine has been synthesized, the pathway called phenylalanine/hydroxycinnamate begins, this being defined as "general phenylpropanoid metabolism" [7]. [Pg.652]

Lapadatescu C, Ginies C, Le Quere J-L, Bonnarme P (2000) Novel Scheme for Biosynthesis of Aryl Metabolites from L-Phenylalanine in the Fungus Bjerkandera adusta. Appl Environ Microbiol 66 1517... [Pg.494]

Achnine L, Blancaflor EB, Rasmussen S, Dixon RA. 2004. Colocalization of L-phenylalanine ammonia-lyase and cinnamate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16 3098-3109. [Pg.530]


See other pages where L-Phenylalanine biosynthesis is mentioned: [Pg.36]    [Pg.50]    [Pg.54]    [Pg.59]    [Pg.64]    [Pg.36]    [Pg.50]    [Pg.54]    [Pg.59]    [Pg.64]    [Pg.264]    [Pg.29]    [Pg.601]    [Pg.412]    [Pg.413]    [Pg.416]    [Pg.539]    [Pg.172]    [Pg.261]    [Pg.492]    [Pg.510]    [Pg.128]    [Pg.34]    [Pg.34]    [Pg.37]    [Pg.385]    [Pg.84]    [Pg.385]    [Pg.184]    [Pg.268]    [Pg.2]    [Pg.70]    [Pg.200]    [Pg.82]    [Pg.86]    [Pg.88]   
See also in sourсe #XX -- [ Pg.57 ]

See also in sourсe #XX -- [ Pg.21 , Pg.32 , Pg.37 , Pg.39 , Pg.42 ]




SEARCH



L Phenylalanine

L biosynthesis

© 2024 chempedia.info