Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics transition state

State is that assembly of atoms or moieties that closely resembles the reactant(s), such that only a relatively small reorganization will generate the reactant(s). Analogously, a late transition state more closely resembles the structure of the reaction product(s). See Chemical Kinetics Transition State Theory Potential Energy Surface Hammond Principle Transition Structure... [Pg.683]

TRANSITION STATE THEORY POTENTIAL ENERGY SUREACE HAMMOND PRINCIPLE TRANSITION STRUCTURE CHEMICAL KINETICS TRANSITION-STATE ANALOGUES MOLECULAR SIMILARITY... [Pg.785]

Semiempirical calculations have been used to calculate kinetic, transition-state, thermodynamic, and physicochemical parameters for acridin-9-amine (18a) and its tautomer, acridin-9( 10//)-iminc (18b).27... [Pg.6]

This model for the thermal rearrangement of l-phenylbicyclo[2.2.1]hex-ene provides an explanation for the stereochemistry observed in the [1,3] methyl shift. More important, it also brings into question some of the common assumptions of reaction kinetics. Transition state theory is based on the premise that the redistribution of internal kinetic energy is faster than is the progress of a collisionally activated reactant over a potential energy surface to a transition state and then to a product. If this assumption is not valid, then the... [Pg.776]

FIGURE 8.1 Henry Eyring developed the theory of the kinetic transition state. F rof. Eyring published more than 680 research papers and was an enthusiastic lecturer. Perhaps, his most important contribution to physical chemistry was the formulation of the transition-state concept in chemical reactions. (Courtesy of the University of Utah, see also http //www.nap.edu/html/biomems/heyring.html). [Pg.156]

For chemical kinetics, transition state theory is most useM in the form that starts from reactants in thermal equilibrium. For our purpose we want a more detailed version, that of reactants with a total energy in the range E oE + AE. If we know how to do that, we can and will average over a Boltzmann distribution in E to obtain the thermal results. The first task at hand is to define what is meant by reactants at equilibrium at a total energy within the range (and at given values of any other conserved quantum numbers). It is the foundation of statistical mechanics that equilibrium under such conditions means that all possible quantum states of the reactants are equally probable. ... [Pg.204]

Space limitations preclude a serious treatment of either of these theories of chemical kinetics. Transition-state theory is developing rapidly as a result of the availability of inexpensive computing power and is a component of many graduate courses in chemical kinetics and chemical reaction engineering. The interested student can learn more about transition-state and collision the y from references such as Masel, R. L., Chemical Kinetics and Catalysis, Wiley-Interscience (2001), Benson, S. W., Thermochemical Kinetics, 2nd edition, Wiley-Interscience (1976), and Moelwyn-Hughes, E. A., Physical Chemistry, 2nd revised edition, Pergamon Press (1961). [Pg.124]

Flere, we shall concentrate on basic approaches which lie at the foundations of the most widely used models. Simplified collision theories for bimolecular reactions are frequently used for the interpretation of experimental gas-phase kinetic data. The general transition state theory of elementary reactions fomis the starting point of many more elaborate versions of quasi-equilibrium theories of chemical reaction kinetics [27, M, 37 and 38]. [Pg.774]

The first two of these we can readily approach with the knowledge gained from the studies of trappmg and sticking of rare-gas atoms, but the long timescales involved in the third process may perhaps more usefiilly be addressed by kinetics and transition state theory [35]. [Pg.906]

In the statistical description of ununolecular kinetics, known as Rice-Ramsperger-Kassel-Marcus (RRKM) theory [4,7,8], it is assumed that complete IVR occurs on a timescale much shorter than that for the unimolecular reaction [9]. Furdiemiore, to identify states of the system as those for the reactant, a dividing surface [10], called a transition state, is placed at the potential energy barrier region of the potential energy surface. The assumption implicit m RRKM theory is described in the next section. [Pg.1008]

Finally, exchange is a kinetic process and governed by absolute rate theory. Therefore, study of the rate as a fiinction of temperature can provide thennodynamic data on the transition state, according to equation (B2.4.1)). This equation, in which Ids Boltzmaim s constant and h is Planck s constant, relates tlie observed rate to the Gibbs free energy of activation, AG. ... [Pg.2090]

Given that a sequence folds to a known native stmcture, what are the mechanisms in the transition from the unfolded confonnation to the folded state This is a kinetics problem, the solution of which requires elucidation of the pathways and transition states in the folding process. [Pg.2642]

Transient, or time-resolved, techniques measure tire response of a substance after a rapid perturbation. A swift kick can be provided by any means tliat suddenly moves tire system away from equilibrium—a change in reactant concentration, for instance, or tire photodissociation of a chemical bond. Kinetic properties such as rate constants and amplitudes of chemical reactions or transfonnations of physical state taking place in a material are tlien detennined by measuring tire time course of relaxation to some, possibly new, equilibrium state. Detennining how tire kinetic rate constants vary witli temperature can further yield infonnation about tire tliennodynamic properties (activation entlialpies and entropies) of transition states, tire exceedingly ephemeral species tliat he between reactants, intennediates and products in a chemical reaction. [Pg.2946]

Fast transient studies are largely focused on elementary kinetic processes in atoms and molecules, i.e., on unimolecular and bimolecular reactions with first and second order kinetics, respectively (although confonnational heterogeneity in macromolecules may lead to the observation of more complicated unimolecular kinetics). Examples of fast thennally activated unimolecular processes include dissociation reactions in molecules as simple as diatomics, and isomerization and tautomerization reactions in polyatomic molecules. A very rough estimate of the minimum time scale required for an elementary unimolecular reaction may be obtained from the Arrhenius expression for the reaction rate constant, k = A. The quantity /cg T//i from transition state theory provides... [Pg.2947]

Under the usual conditions their ratio is kinetically controlled. Alder and Stein already discerned that there usually exists a preference for formation of the endo isomer (formulated as a tendency of maximum accumulation of unsaturation, the Alder-Stein rule). Indeed, there are only very few examples of Diels-Alder reactions where the exo isomer is the major product. The interactions underlying this behaviour have been subject of intensive research. Since the reactions leadirig to endo and exo product share the same initial state, the differences between the respective transition-state energies fully account for the observed selectivity. These differences are typically in the range of 10-15 kJ per mole. ... [Pg.6]

Melander first sought for a kinetic isotope effect in aromatic nitration he nitrated tritiobenzene, and several other compounds, in mixed acid and found the tritium to be replaced at the same rate as protium (table 6.1). Whilst the result shows only that the hydrogen is not appreciably loosened in the transition state of the rate-determining step, it is most easily understood in terms of the S 2 mechanism with... [Pg.110]


See other pages where Kinetics transition state is mentioned: [Pg.262]    [Pg.262]    [Pg.766]    [Pg.342]    [Pg.344]    [Pg.346]    [Pg.348]    [Pg.350]    [Pg.352]    [Pg.354]    [Pg.356]    [Pg.358]    [Pg.360]    [Pg.364]    [Pg.366]    [Pg.262]    [Pg.262]    [Pg.766]    [Pg.342]    [Pg.344]    [Pg.346]    [Pg.348]    [Pg.350]    [Pg.352]    [Pg.354]    [Pg.356]    [Pg.358]    [Pg.360]    [Pg.364]    [Pg.366]    [Pg.778]    [Pg.781]    [Pg.782]    [Pg.834]    [Pg.2115]    [Pg.2421]    [Pg.2660]    [Pg.2947]    [Pg.304]    [Pg.387]    [Pg.596]    [Pg.152]    [Pg.109]    [Pg.110]    [Pg.110]    [Pg.116]    [Pg.116]   
See also in sourсe #XX -- [ Pg.736 ]




SEARCH



Kinetic transitions

Transition, kinetics

© 2024 chempedia.info