Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones radical formation from

Photopolymerization reactions are widely used for printing and photoresist appHcations (55). Spectral sensitization of cationic polymerization has utilized electron transfer from heteroaromatics, ketones, or dyes to initiators like iodonium or sulfonium salts (60). However, sensitized free-radical polymerization has been the main technology of choice (55). Spectral sensitizers over the wavelength region 300—700 nm are effective. AcryUc monomer polymerization, for example, is sensitized by xanthene, thiazine, acridine, cyanine, and merocyanine dyes. The required free-radical formation via these dyes may be achieved by hydrogen atom-transfer, electron-transfer, or exciplex formation with other initiator components of the photopolymer system. [Pg.436]

Two classes of charged radicals derived from ketones have been well studied. Ketyls are radical anions formed by one-electron reduction of carbonyl compounds. The formation of the benzophenone radical anion by reduction with sodium metal is an example. This radical anion is deep blue in color and is veiy reactive toward both oxygen and protons. Many detailed studies on the structure and spectral properties of this and related radical anions have been carried out. A common chemical reaction of the ketyl radicals is coupling to form a diamagnetic dianion. This occurs reversibly for simple aromatic ketyls. The dimerization is promoted by protonation of one or both of the ketyls because the electrostatic repulsion is then removed. The coupling process leads to reductive dimerization of carbonyl compounds, a reaction that will be discussed in detail in Section 5.5.3 of Part B. [Pg.681]

By using various trapping reagents, it has been deduced that the transannular fragmentation is rapidly reversible. The cyclization of the fragmented radical C is less favorable, and it is trapped at rates which exceed that for recyclization under most circumstances. " Radicals derived from ethers and acetals by hydrogen abstraction are subject to fragmentation, with formation of a ketone or ester, respectively. [Pg.723]

Another factor complicating the situation in composition of peroxyl radicals propagating chain oxidation of alcohol is the production of carbonyl compounds due to alcohol oxidation. As a result of alcohol oxidation, ketones are formed from the secondary alcohol oxidation and aldehydes from the primary alcohols [8,9], Hydroperoxide radicals are added to carbonyl compounds with the formation of alkylhydroxyperoxyl radical. This addition is reversible. [Pg.295]

Brown proposed a mechanism where the enolate radical resulting from the radical addition reacts with the trialkylborane to give a boron enolate and a new alkyl radical that can propagate the chain (Scheme 24) [61]. The formation of the intermediate boron enolate was confirmed by H NMR spectroscopy [66,67]. The role of water present in the system is to hydrolyze the boron enolate and to prevent its degradation by undesired free-radical processes. This hydrolysis step is essential when alkynones [68] and acrylonitrile [58] are used as radical traps since the resulting allenes or keteneimines respectively, react readily with radical species. Maillard and Walton have shown by nB NMR, ll NMR und IR spectroscopy, that tri-ethylborane does complex methyl vinyl ketone, acrolein and 3-methylbut-3-en-2-one. They proposed that the reaction of triethylborane with these traps involves complexation of the trap by the Lewis acidic borane prior to conjugate addition [69]. [Pg.95]

Kwok, E. S. C S. M. Aschmann, J. Arey, and R. Atkinson, Product Formation from the Reaction of the N03 Radical with Isoprene and Rate Constants for the Reactions of Methacrolein and Methyl Vinyl Ketone with the NO-, Radical, Int, J. Chem. Kinet., 28, 925-934 (1996c). [Pg.257]

Functionalization of the carbon radical resulting from cyclization of an aminium radical is an important step for synthetic chemists in order to obtain the desired product directly or to provide a handle for further transformations. Radical reactions of A-chloroalkenylamines (Section III,B) lead to /3-chloro pyrrolidines, which are prone to rearrangement to give piperidines. Reactions of N-nitroso alkenylamines lead to 8-nitroso pyrrolidines and, if an a-hydrogen is present, ultimately to oximes of aldehydes or ketones. Advantages of the latter transformation are the formation of stable substituted pyrrolidines and the utility of the oxime moiety in regard to further transformations. [Pg.31]

We also observed similar phenomena in the reaction of silyl enol ethers with cation radicals derived from allylic sulfides. For example, oxidation of allyl phenyl sulfide (3) with ammonium hexanitratocerate (CAN) in the presence of silyl enol ether 4 gave a-phenylthio-Y,5-un-saturated ketone 5. In this reaction, silyl enol ether 4 reacts with cation radical of allyl phenyl sulfide CR3 to give sulfonium intermediate C3, and successive deprotonation and [2,3]-Wittig rearrangement affords a-phenylthio-Y,6-unsaturated ketone 5 (Scheme 2). Direct carbon-carbon bond formation is so difficult that nucleophiles attack the heteroatom of the cation radicals. [Pg.47]

Two different cases may occur. If this radical is formed in a succession of styrene units (1), it reacts in the same way as in PS. If it is formed on a styrene unit linked to an acrylonitrile unit (2), three reaction pathways may be envisaged. The alkoxy radical resulting from the decomposition of the hydroperoxide formed on this polystyryl radical may react by 3-scission. Scissions (a) and (b) yield chain ketones, acetophenone end-groups and phenyl and alkyl radicals as previously observed in the case of PS photooxidation mechanism. Scission (c) leads to the formation of an aromatic ketone and an alkyl radical. This alkyl radical may be the precursor of acrylonitrile units (identified by IR spectroscopy at 2220 cm-1), or may react directly with oxygen and after several reactions generates acid groups, or finally this radical may isomerize to a more... [Pg.710]

The thermal or photochemical homolysis of the hydroperoxide leads to the formation of an alkoxy radical. The alkoxy radical is the precursor of unsaturated alcohols, acids and ketones. The decrease in intensity of the band at 807 cm-1 indicated saturation of the double bond, which could result from a radical addition to the double bond (for example, by reaction with the hydroxyl radicals resulting from the decomposition of hydroperoxides). Saturation reactions result in the formation of saturated alcohols, acids and ketones. [Pg.719]


See other pages where Ketones radical formation from is mentioned: [Pg.200]    [Pg.39]    [Pg.431]    [Pg.309]    [Pg.107]    [Pg.79]    [Pg.201]    [Pg.123]    [Pg.347]    [Pg.127]    [Pg.460]    [Pg.18]    [Pg.680]    [Pg.924]    [Pg.9]    [Pg.66]    [Pg.680]    [Pg.924]    [Pg.65]    [Pg.348]    [Pg.402]    [Pg.145]    [Pg.1563]    [Pg.356]    [Pg.108]    [Pg.108]    [Pg.598]    [Pg.48]    [Pg.428]    [Pg.181]    [Pg.264]    [Pg.94]    [Pg.384]    [Pg.75]    [Pg.187]    [Pg.57]    [Pg.27]    [Pg.32]   
See also in sourсe #XX -- [ Pg.117 ]




SEARCH



Formate radicals

Ketones formation

Radical formation

Radicals from

© 2024 chempedia.info