Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones catalysis, ruthenium complexes

The concerted delivery of protons from OH and hydride from RuH found in these Shvo systems is related to the proposed mechanism of hydrogenation of ketones (Scheme 7.15) by a series of ruthenium systems that operate by metal-ligand bifunctional catalysis [86]. A series of Ru complexes reported by Noyori, Ohkuma and coworkers exhibit extraordinary reactivity in the enantioselective hydrogenation of ketones. These systems are described in detail in Chapters 20 and 31, and mechanistic issues of these hydrogenations by ruthenium complexes have been reviewed [87]. [Pg.194]

Ruthenium complexes B are stable in the presence of alcohols, amines, or water, even at 60 °C. Olefin metathesis can be realized even in water as solvent, either using ruthenium carbene complexes with water-soluble phosphine ligands [815], or in emulsions. These complexes are also stable in air [584]. No olefination of aldehydes, ketones, or derivatives of carboxylic acids has been observed [582]. During catalysis of olefin metathesis replacement of one phosphine ligand by an olefin can occur [598,809]. [Pg.144]

The same concept is applicable to allylic alcohols, ketones, or ketoximes. Enol acetates or ketones were successfully converted in multi-step reactions to chiral acetates in high yields and optical yields through catalysis by Candida antarctica lipase B (CALB, Novozyme 435) and a ruthenium complex. 2,6-Dimethylheptan-4-ol served as a hydrogen donor and 4-chlorophenyl acetate as an acyl donor for the conversion of the ketones (Jung, 2000a). [Pg.532]

Moreno-Manas et al. [98] reported on a similar effect of triphenylphosphine for the Michael addition of active methylene compounds to n-acceptor olefins such as methyl vinyl ketone, acrylonitrile, and 2-vinylpyridine and dialkyl azodi-carboxylates. They compared the reactivity of RuH2(PPh3)4, RuCl2(PPh3)3, and PPh3 and concluded that for /5-diketones, ketoesters, and ketoamides, triphenylphosphine released from the ruthenium complexes contributes totally or partially to the catalysis. [Pg.75]

Metal enolates have played a Umited role in the metal-catalyzed isomerization of al-kenes . As illustrated in a comprehensive review by Bouwman and coworkers, ruthenium complex Ru(acac)3 (51) has been used to isomerize a wide range of substituted double bonds, including aUylic alcohols (131), to the corresponding ketones (132) (equation 38) . The isomerization of aUylic alcohols affords products that have useful applications in natural product synthesis and in bulk chemical processes. An elegant review by Fogg and dos Santos shows how these complexes can be used in tandem catalysis, where an alkene is subjected to an initial isomerization followed by a hydroformylation reaction ... [Pg.570]

Polbom K, Severin K (2000) Biomimeric catalysis with immobilized organometaUic ruthenium complexes Substrate- and regioselecrive transfer hydrogenation of ketones. Chem Eur J 6 4604... [Pg.491]

Under catalysis by a ruthenium complex, N-methylmorpholine 7V-oxide rapidly oxidizes most alcohols to the corresponding aldehyde or ketone in high yield at room temperature. Homoallylic alcohols are exceptional, undergoing conversion at a slow rate, if at all. Preferential oxidation of primary, secondary diols at the secondary centre leading to keto-alcohols has been achieved by treatment of the bis-trityl derivative with trityl tetrafluoroborate. ... [Pg.30]

Polborn, K. Severin, K. Biomimetic catalysis with immobilised organometallic ruthenium complexes substrate- and regioselective transfer hydrogenation of ketones. Chem. Eur. J. 2000, 5, 4604-4611. [Pg.179]

Thiolate-bridged diruthenium complexes such as Cp RuCl(p2-SR)2RuCp Cl catalyze the propargylic substitution reaction of propargylic alcohol derivatives with various carbon-centered nucleophiles [118-120]. Ketones [119] (Eq. 88), aromatic compounds [120] (Eq. 89), or alkenes thus selectively afford the corresponding propargylated products with C-C bond formation. An allenylidene intermediate is proposed in these reactions. They are detailed in the chapter Ruthenium Vinylidenes and Allenylidenes in Catalysis of this volume. [Pg.36]

Among the most significant developments in the field of catalysis in recent years have been the discovery and elucidation of various new, and often novel, catalytic reactions of transition metal ions and coordination compounds 13, 34). Examples of such reactions are the hydrogenation of olefins catalyzed by complexes of ruthenium (36), rhodium (61), cobalt (52), platinum (3, 26, 81), and other metals the hydroformylation of olefins catalyzed by complexes of cobalt or rhodium (Oxo process) (6, 46, 62) the dimerization of ethylene (i, 23) and polymerization of dienes (15, 64, 65) catalyzed by complexes of rhodium double-bond migration in olefins catalyzed by complexes of rhodium (24,42), palladium (42), cobalt (67), platinum (3, 5, 26, 81), and other metals (27) the oxidation of olefins to aldehydes, ketones, and vinyl esters, catalyzed by palladium chloride (Wacker process) (47, 48, 49,... [Pg.1]

The identity of active catalytic species for the TH of ketones with our iron carbonyl [6.5.6]-P-N-N-P complexes was still unclear. Did the imine or imines on the ligand get reduced in situ, allowing catalysis to occur through a bifunctional outer sphere mechanism, as seen with the analogous ruthenium systems This question drove us to further investigate the mechanism of transfer hydrogenation with our first generation [6.5.6]-P-N-N-P systems. [Pg.218]

Ligand-metal bifunctional catalysis provides an efficient method for the hydrogenation of various unsaturated organic compounds. Shvo-type [83-85] Ru-H/OH and Noyori-type [3-7] Ru-H/NH catalysts have demonstrated bifimctionality with excellent chemo- and enantioselectivities in transfer hydrogenations and hydrogenations of alkenes, aldehydes, ketones, and imines. Based on the isoelectronic analogy of H-Ru-CO and H-Re-NO units, it was anticipated that rhenium nitrosyl-based bifunctional complexes could exhibit catalytic activities comparable to the ruthenium carbonyl ones (Scheme 29) [86]. [Pg.197]


See other pages where Ketones catalysis, ruthenium complexes is mentioned: [Pg.65]    [Pg.218]    [Pg.4131]    [Pg.4130]    [Pg.681]    [Pg.112]    [Pg.577]    [Pg.251]    [Pg.33]    [Pg.382]    [Pg.384]    [Pg.328]    [Pg.49]    [Pg.1168]    [Pg.227]    [Pg.39]    [Pg.260]    [Pg.91]    [Pg.111]    [Pg.4120]    [Pg.215]    [Pg.343]    [Pg.229]    [Pg.164]    [Pg.198]    [Pg.440]    [Pg.4119]    [Pg.4120]    [Pg.263]    [Pg.366]    [Pg.129]    [Pg.131]   
See also in sourсe #XX -- [ Pg.232 ]

See also in sourсe #XX -- [ Pg.232 ]

See also in sourсe #XX -- [ Pg.6 , Pg.232 ]




SEARCH



Complex catalysis

Ketones catalysis

Ketones complexes

Ketones ruthenium catalysis

Ketones, methyl vinyl catalysis, ruthenium complexes

Ruthenium catalysis

Ruthenium ketones

© 2024 chempedia.info