Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones asymmetrical building blocks

All chiral products as well as enantiomerically enriched substrate ketones from such transformations are valuable building blocks in asymmetric synthesis [182,183]. While CHMO-type enzymes in general display such a behavior, CPMO-type biocatalysts give... [Pg.251]

The oxidation of enol ethers and their derivatives is a useful method for the synthesis of a-hydroxy-ketones or their derivatives, which are versatile building blocks for organic synthesis. Since enol ethers and esters are types of olefin, some asymmetric epoxidation and dihydroxylation reactions have been applied to their oxidation. [Pg.225]

After extensive developmental studies, [35] the final crucial element in our most recent synthesis of epothilone B involves an asymmetric catalytic reduction of the C3 ketone of 67 proceeding via a modified Noyori procedure (Scheme 2.8, 67—>68). In the event, Noyori reduction of ketone 67 afforded the desired diol 68 with excellent diasteresdectivity (>95 5). The ability to successftdly control the desired C3 stereochemistry of the late stage intermediate 68 permitted us to introduce the Cl-C7 fragment into the synthesis as an achiral building block. [Pg.21]

Asymmetric Mannich reactions provide useful routes for the synthesis of optically active p-amino ketones or esters, which are versatile chiral building blocks for the preparation of many nitrogen-containing biologically important compounds [1-6]. While several diastereoselective Mannich reactions with chiral auxiliaries have been reported, very little is known about enantioselective versions. In 1991, Corey et al. reported the first example of the enantioselective synthesis of p-amino acid esters using chiral boron enolates [7]. Yamamoto et al. disclosed enantioselective reactions of imines with ketene silyl acetals using a Bronsted acid-assisted chiral Lewis acid [8]. In all cases, however, stoichiometric amounts of chiral sources were needed. Asymmetric Mannich reactions using small amounts of chiral sources were not reported before 1997. This chapter presents an overview of catalytic asymmetric Mannich reactions. [Pg.143]

For the synthesis of optically pure building blocks we mainly focused on the synthesis of protected noncoded (R)- and (S)-amino acids, as they can be synthesized reliably in enantiomerically pure form with a large variety of side chains using asymmetric hydrogenation of a-amino-a, 3-didehydroamino acids using cationic diphosphine rhodium catalysts.216,217 As a typical example of a reactophore we present a-alkynyl ketones, which is a representative bis-acceptor molecule. In Scheme 5 are depicted some of the many synthetic applications of acetylenic ketones in heterocyclic synthesis, which have great potential for combinatorial and parallel organic synthesis. [Pg.53]

Nevertheless, the use of chirally modified Lewis acids as catalysts for enantioselective aminoalkylation reactions proved to be an extraordinary fertile research area [3b-d, 16]. Meanwhile, numerous publications demonstrate their exceptional potential for the activation and chiral modification of Mannich reagents (generally imino compounds). In this way, not only HCN or its synthetic equivalents but also various other nucleophiles could be ami-noalkylated asymmetrically (e.g., trimethylsilyl enol ethers derived from esters or ketones, alkenes, allyltributylstannane, allyltrimethylsilanes, and ketones). This way efficient routes for the enantioselective synthesis of a variety of valuable synthetic building blocks were created (e.g., a-amino nitriles, a- or //-amino acid derivatives, homoallylic amines or //-amino ketones) [3b-d]. [Pg.136]

To create stereochemical diversity within MCRs there is need for stereoselective (or -specific) reactions. Since many MCRs involve flat intermediates, like imines and a,p-unsaturated ketones, they result in the formation of racemic products. Moreover, often mixtures of diastereomers are obtained if more than one stereo-genic centre is formed. However, there are several examples known of asymmetric induction, by the use of chiral building blocks (diastereoselective reactions). For example, it has been successfully applied to the Strecker, Mannich, Biginelli, Petasis, Passerini, Ugi, and many other MCRs, which has been excellently reviewed by Yus and coworkers [33]. Enantioselective MCRs, which generally proved to be much harder, have been performed with organometaUic chiral catalysts and orga-nocatalysts [33, 34]. [Pg.103]

Several enantioselective approaches to vitamin E (1), based on resolution of the products, the use of enantiopure natural building blocks, auxiliary controlled reactions and asymmetric oxidations have been described. In addition, a palladium-catalyzed asymmetric allylic alkylation reaction to build up the chiral chroman framework has been employed by Trost. Tietze and coworkers have developed asymmetric syntheses of the chiral chroman moiety using either the selective ally-lation of an alkyl methyl ketone or a Sharpless dihydroxylation as the key step. However, none of these methods is efficient enough for an industrial approach. ... [Pg.78]

Asymmetric synthesis by means of a cyandiydrin is an imprvtant process in organic synthesis, because the cyanohydrin can be easily converted into a variety of valuable synthetic intermediates, such as a-hy-droxy ketones, a-hydroxy acids, y-diketones, p-amino alcohols, 4-oxocarboxylic esters, 4 xonitriles, a-amino acids and acyl cyanides. More specifically, the (S)-cyanohydrin of m-phenoxybenzaldehyde is a building block for the synthesis of the insecticide deltamethrin, or (IR)-cis-pyrethroids. ... [Pg.546]


See other pages where Ketones asymmetrical building blocks is mentioned: [Pg.306]    [Pg.327]    [Pg.83]    [Pg.147]    [Pg.93]    [Pg.364]    [Pg.378]    [Pg.389]    [Pg.518]    [Pg.135]    [Pg.183]    [Pg.330]    [Pg.227]    [Pg.288]    [Pg.47]    [Pg.395]    [Pg.123]    [Pg.86]    [Pg.977]    [Pg.15]    [Pg.1]    [Pg.817]    [Pg.245]    [Pg.15]    [Pg.376]    [Pg.134]    [Pg.336]    [Pg.365]    [Pg.214]    [Pg.116]    [Pg.59]    [Pg.63]    [Pg.77]    [Pg.70]    [Pg.273]    [Pg.977]    [Pg.480]    [Pg.17]    [Pg.93]    [Pg.364]   
See also in sourсe #XX -- [ Pg.120 , Pg.121 , Pg.122 , Pg.123 , Pg.124 ]




SEARCH



Asymmetrical ketones

© 2024 chempedia.info