Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones, aldol condensation synthesis

The so-called silyl enol ethers (enoxyorganylsilanes) are important synthones, e.g, for regiospecific preparation of enolates, aldol condensation, synthesis of a-substituted carbonyl derivatives and for thermal or photochemical cycloaddition. For the preparation of silyl enol ethers the corresponding aldehydes and ketones first have to be enolized and then treated with silylating agents in the presence of a base. Thus, from butanal (608) and Me3SiCl, cis/trans- 1-trimethylsiloxybut-l-ene (609) is obtained (equation 311)347, while 1-trimethylsiloxy-l-phenylethene (610) is the product from acetophenone (90a) (equation 312)347. [Pg.732]

Acetoxy-l,7-octadiene (40) is converted into l,7-octadien-3-one (124) by hydrolysis and oxidation. The most useful application of this enone 124 is bisannulation to form two fused six-membered ketonesfl 13], The Michael addition of 2-methyl-1,3-cyclopentanedione (125) to 124 and asymmetric aldol condensation using (5)-phenylalanine afford the optically active diketone 126. The terminal alkene is oxidi2ed with PdCl2-CuCl2-02 to give the methyl ketone 127 in 77% yield. Finally, reduction of the double bond and aldol condensation produce the important intermediate 128 of steroid synthesis in optically pure form[114]. [Pg.442]

The 3.8-nonadienoate 91, obtained by dimerization-carbonylation, has been converted into several natural products. The synthesis of brevicomin is described in Chapter 3, Section 2.3. Another royal jelly acid [2-decenedioic acid (149)] was prepared by cobalt carbonyl-catalyzed carbonylation of the terminal double bond, followed by isomerization of the double bond to the conjugated position to afford 149[122], Hexadecane-2,15-dione (150) can be prepared by Pd-catalyzed oxidation of the terminal double bond, hydrogenation of the internal double bond, and coupling by Kolbe electrolysis. Aldol condensation mediated by an organoaluminum reagent gave the unsaturated cyclic ketone 151 in 65% yield. Finally, the reduction of 151 afforded muscone (152)[123]. n-Octanol is produced commercially as described beforc[32]. [Pg.445]

The first step of the Robinson annulation is simply a Michael reaction. An enamine or an enolate ion from a jS-keto ester or /3-diketone effects a conjugate addition to an a-,/3-unsaturated ketone, yielding a 1,5-diketone. But as we saw in Section 23.6,1,5-diketones undergo intramolecular aldol condensation to yield cyclohexenones when treated with base. Thus, the final product contains a six-membered ring, and an annulation has been accomplished. An example occurs during the commercial synthesis of the steroid hormone estrone (figure 23.9). [Pg.899]

In this example, the /3-diketone 2-methyJ-l,3-cyclopentanedione is used to generate the enolate ion required for Michael reaction and an aryl-substituted a,/3-unsaturated ketone is used as the acceptor. Base-catalyzed Michael reaction between the two partners yields an intermediate triketone, which then cyclizes in an intramolecular aldol condensation to give a Robinson annulation product. Several further transformations are required to complete the synthesis of estrone. [Pg.899]

In contrast to the Johnson s D —> A-ring construction approach, Brown devised an A —> D-ring construction approach [22]. Starting from Wieland-Miescher ketone (30), a common source of the A, B-rings in the de novo synthesis of steroids, the C-ring was introduced via hydrazone allylation, ozonolysis, aldol condensation, and olefin isomerization (31 > 32). The D-ring was assembled by a reductive alkylation... [Pg.28]

A very interesting organocatalyzed one-pot Michael addition/aldol condensation/Darzens condensation has been reported for the asymmetric synthesis of epoxy-ketones <06JA5475>. An initial asymmetric Michael condensation between 16 and 17 is catalyzed by proline derivative 18. Intermediate 19 then undergoes an aldol condensation followed by a stereoselective Darzens condensation to provide epoxy-ketone 20 in moderate yield and with surprisingly good enantiomeric excess. [Pg.74]

Three tactical approaches were surveyed in the evolution of our program. As outlined in Scheme 2.7, initially the aldol reaction (Path A) was performed direcdy between aldehyde 63 and the dianion derived from tricarbonyl 58. In this way, it was indeed possible to generate the Z-lithium enolate of 58 as shown in Scheme 2.7 which underwent successful aldol condensation. However, the resultant C7 P-hydroxyl functionality tended to cyclize to the C3 carbonyl group, thereby affording a rather unmanageable mixture of hydroxy ketone 59a and lactol 59b products. Lac-tol formation could be reversed following treatment of the crude aldol product under the conditions shown (Scheme 2.7) however, under these conditions an inseparable 4 1 mixture of diastereomeric products, 60 (a or b) 61 (a or b) [30], was obtained. This avenue was further impeded when it became apparent that neither the acetate nor TES groups were compatible with the remainder of the synthesis. [Pg.19]

Simple reactivity inversion" implies using an umpoled synthon whose origin has, in principle, nothing in common with the synthon with "unnatural" polarity. An example of this type of reactivity inversion is found in one of the possible synthesis of cw-jasmone (3) in which the nitroethane (4) is used as an equivalent of an "acetyl anion" and reacts with an a,P-unsaturated ketone to give the corresponding 1,4-bifunctional system which can then be transformed by a Nef-type reaction into the dissonant 1,4-dicarbonyl system [5]. An intramolecular aldol condensation finally affords the target molecule (Scheme 5.3). [Pg.113]

Aldol chemicals refer to a variety of substances desired from acetone involving an aldol condensation in a portion of their synthesis. The most important of these chemicals is methyl isobutyl ketone (MIBK), a common solvent for many coatings, pesticides, adhesives, and pharmaceuticals. Approximately 0.17 billion lb of MIBK were made in recent years. The synthesis is outlined on the next page. [Pg.175]

One of the most thoroughly investigated aldol condensations is the selfcondensation of acetone. This is an important industrial reaction for the production of diacetone alcohol (DA) (Scheme 11), which is valuable as a chloride-free solvent and an intermediate in the synthesis of industrially important products such as mesityl oxide (MO), isophorone, methyl isobutyl ketone, and 3,5-xylenol. The reaction is exothermic, with the yield of DA decreasing with increasing reaction temperature it is usually performed with NaOH or KOH as a basic catalyst 118). [Pg.256]

Aldol addition and condensation reactions involving two different carbonyl compounds are called mixed aldol reactions. For these reactions to be useful as a method for synthesis, there must be some basis for controlling which carbonyl component serves as the electrophile and which acts as the enolate precursor. One of the most general mixed aldol condensations involves the use of aromatic aldehydes with alkyl ketones or aldehydes. Aromatic aldehydes are incapable of enolization and cannot function as the nucleophilic component. Furthermore, dehydration is especially favorable because the resulting enone is conjugated with the aromatic ring. [Pg.60]

Although ketones are reported to give poor yields in such condensation reactions, Maag and co-workers have used this step in a synthesis of a rearrangement product of bicyclomycin (78JA6786). The route involves two successive aldol condensations, the first with an aldehyde and the second with a ketone the latter step (Scheme 27) proceeds in 41% yield. [Pg.224]

The formation of C-C bonds by aldol condensation is a very useful method in synthesis. Besides the chemical synthesis, aldolases can be used to perform this reaction. The reaction yields a stereoselective condensation of an aldehyde with a ketone donor. [Pg.502]

Extensive stmcture activity relationship (SAR) studies in this series revealed that unsymmetrical substitution on the heterocyclic ring and hence the introduction of chirality on the central carbon atom led to increased potency. Such asymmetrical dihydro-pyridines can be prepared by stepwise variation of the Hantzsch synthesis, based on the hypothetical alternate route to nifedipine. Thus, aldol condensation of methyl acetoacetate with 2,3-dichlorobenzaldehyde (13-1) gives the cinnamyl ketone (13-2). Reaction of that with the enamine (13-3) from ethyl acetoacetate gives the calcium channel blocker felodipine (13-4) [14]. [Pg.330]


See other pages where Ketones, aldol condensation synthesis is mentioned: [Pg.304]    [Pg.2405]    [Pg.247]    [Pg.431]    [Pg.437]    [Pg.15]    [Pg.258]    [Pg.246]    [Pg.454]    [Pg.317]    [Pg.32]    [Pg.317]    [Pg.867]    [Pg.363]    [Pg.166]    [Pg.77]    [Pg.260]    [Pg.528]    [Pg.79]    [Pg.46]    [Pg.34]    [Pg.277]    [Pg.25]    [Pg.76]    [Pg.42]    [Pg.365]    [Pg.397]    [Pg.418]    [Pg.440]   
See also in sourсe #XX -- [ Pg.635 ]




SEARCH



Aldol condensate

Aldol condensation

Aldol condensation synthesis

Aldol ketones

Aldol syntheses

Condensations aldol condensation

Ketone synthesis

Ketones aldol condensation

© 2024 chempedia.info