Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketones aldol addition

An important variation on the Claisen condensation is to use a ketone as the anionic reagent. This often works well because ketones usually are more acidic than simple esters and the base-induced self-condensation of ketones (aldol addition) is thermodynamically unfavorable (Section 17-3C). A typical example is the condensation of cyclohexanone with diethyl ethanedioate (diethyl oxalate) ... [Pg.832]

A systematic study of methyl ketone aldol additions with a-alkoxy and o ,/5-bisalkoxy aldehydes has been undertaken, under non-chelating conditions.130 With a single a-alkoxy stereocentre, diastereoselectivity generally follows Cornforth/polar Felkin-Anh models. With an additional /5-alkoxy stereocentre, 7r-facial selectivity is dramatically dependent on the relative configuration at a- and /3-centres if they are anti, high de results, but not if they are syn. A model for such acyclic stereocontrol is proposed in which the /5-alkoxy substituent determines the position in space of the a-alkoxy relative to the carbonyl, thus determining the n-facial selectivity. [Pg.18]

Kinetic control. The Zimmerman-Traxler model, as applied to propionate and ethyl ketone aldol additions, is shown in Scheme 5.7 (note the similarity to the boron-mediated allyl additions in Scheme 5.3). Based on this model, we would expect a significant dependence of stereoselectivity on the enolate geometry, which is in turn dependent on the nature of X and the deprotonating agent (see section... [Pg.171]

Evans DA, Cote B, Coleman PJ, Connell BT. 1,5-Asymmetric induction in boron-mediated (3-aIkoxy methyl ketone aldol addition reactions. J. Am. Chem. Soc. 2003 125(36) 10893-10898. [Pg.246]

A useful catalyst for asymmetric aldol additions is prepared in situ from mono-0> 2,6-diisopropoxybenzoyl)tartaric acid and BH3 -THF complex in propionitrile solution at 0 C. Aldol reactions of ketone enol silyl ethers with aldehydes were promoted by 20 mol % of this catalyst solution. The relative stereochemistry of the major adducts was assigned as Fischer- /ir o, and predominant /i -face attack of enol ethers at the aldehyde carbonyl carbon atom was found with the (/ ,/ ) nantiomer of the tartaric acid catalyst (K. Furuta, 1991). [Pg.61]

If a Michael reaction uses an unsymmetrical ketone with two CH-groups of similar acidity, the enol or enolate is first prepared in pure form (p. llff.). To avoid equilibration one has to work at low temperatures. The reaction may then become slow, and it is advisable to further activate the carbon-carbon double bond. This may be achieved by the introduction of an extra electron-withdrawing silyl substituent at C-2 of an a -synthon. Treatment of the Michael adduct with base removes the silicon, and may lead as well to an aldol addition (G. Stork, 1973, 1974 B R.K. Boeckman, Jr., 1974). [Pg.73]

As with other reversible nucleophilic addition reactions the equilibria for aldol additions are less favorable for ketones than for aldehydes For example only 2% of the aldol addition product of acetone is present at equilibrium... [Pg.773]

The situation is similar for other ketones Special procedures for aldol addition and self condensation of ketones have been developed but are rarely used... [Pg.773]

Even though ketones have the potential to react with themselves by aldol addition recall that the position of equilibrium for such reactions lies to the side of the starting materials (Section 18 9) On the other hand acylation of ketone enolates gives products (p keto esters or p diketones) that are converted to stabilized anions under the reaction conditions Consequently ketone acylation is observed to the exclusion of aldol addition when ketones are treated with base m the presence of esters... [Pg.893]

Thus mixed aldol additions can be achieved by the tactic of quantitative enolate for matron using LDA followed by addition of a different aldehyde or ketone... [Pg.904]

Cleavage reactions of carbohydrates also occur on treatment with aqueous base for prolonged periods as a consequence of base catalyzed retro aldol reactions As pointed out m Section 18 9 aldol addition is a reversible process and (3 hydroxy carbonyl com pounds can be cleaved to an enolate and either an aldehyde or a ketone... [Pg.1058]

Alditol (Section 25 18) The polyol obtained on reduction of the carbonyl group of a carbohydrate Aldol addition (Section 18 9) Nucleophilic addition of an aldehyde or ketone enolate to the carbonyl group of an aide hyde or a ketone The most typical case involves two mole cules of an aldehyde and is usually catalyzed by bases... [Pg.1275]

Aldol Addition and Related Reactions. Procedures that involve the formation and subsequent reaction of anions derived from active methylene compounds constitute a very important and synthetically useful class of organic reactions. Perhaps the most common are those reactions in which the anion, usually called an enolate, is formed by removal of a proton from the carbon atom alpha to the carbonyl group. Addition of this enolate to another carbonyl of an aldehyde or ketone, followed by protonation, constitutes aldol addition, for example... [Pg.471]

Butyraldehyde undergoes stereoselective crossed aldol addition with diethyl ketone [96-22-0] ia the presence of a staimous triflate catalyst (14) to give a predominantiy erythro product (3). Other stereoselective crossed aldol reactions of //-butyraldehyde have been reported (15). [Pg.378]

Aldol condensation (Sections 18.9-18.10) When an aldol addition is carried out so that the (i-hydroxy aldehyde or ketone dehydrates under the conditions of its formation, the product is described as arising by an aldol condensation. [Pg.1275]

In general, the rate of syn/anti equilibration increases with decreasing basicity of the enolate and with increasing steric repulsion in the enolate. The first point is illustrated by the fact that aldolates derived from ketones (X = aryl, alkyl) undergo syn/anti equilibration more readily than those derived from amides or carboxylates (X = NR2,0-). It appears that the rate of the retro-aldol addition is higher when the enolate thereby generated is more stable. [Pg.455]

Surprisingly, the size of the silyl protecting group significantly influences the stereochemical outcome of aldol additions performed with the lithium enolates of (S )-l-trimethylsiloxy-and (S)-l-f< rt-butyldimethylsiloxy-l-cyclohexyl-2-butanone. Thus, the former reagent attacks benzaldehyde preferably from the Si-face (9 1), which is the opposite topicity to that found in the addition of the corresponding titanium enolates of either ketone ... [Pg.466]

Remarkably, the ketones 16 and 19 lead to an/i-aldoLs when the aldol addition is mediated by the appropriate metal and/or cosolvent (see Section 1.3.4.2.1.2.). [Pg.470]

Enolates also result from the deprotonation of ketones 4 by means of dieyclohcxylchloro-borane. As expected, the (A)-enolboranes 5 formed in this way lead to rw/Z-aldols. Remarkably simple induction of diastereoselectivity is achieved in aldol additions with isobutyraldehyde53d< ... [Pg.472]

The (acyloxy)borane complex 9, readily available from tartaric acid derivative 8, also catalyzes aldol additions of silyl enol ethers34 and silylketene acetals3 5 in an enantioselective manner. Thus,. u -ketones 10 and /Thydroxy esters 12 are available34, as well as a-unsubstituted ketones 1135. [Pg.582]

Among the compounds capable of forming enolates, the alkylation of ketones has been most widely studied and applied synthetically. Similar reactions of esters, amides, and nitriles have also been developed. Alkylation of aldehyde enolates is not very common. One reason is that aldehydes are rapidly converted to aldol addition products by base. (See Chapter 2 for a discussion of this reaction.) Only when the enolate can be rapidly and quantitatively formed is aldol formation avoided. Success has been reported using potassium amide in liquid ammonia67 and potassium hydride in tetrahydrofuran.68 Alkylation via enamines or enamine anions provides a more general method for alkylation of aldehydes. These reactions are discussed in Section 1.3. [Pg.31]

The general mechanistic features of the aldol addition and condensation reactions of aldehydes and ketones were discussed in Section 7.7 of Part A, where these general mechanisms can be reviewed. That mechanistic discussion pertains to reactions occurring in hydroxylic solvents and under thermodynamic control. These conditions are useful for the preparation of aldehyde dimers (aldols) and certain a,(3-unsaturated aldehydes and ketones. For example, the mixed condensation of aromatic aldehydes with aliphatic aldehydes and ketones is often done under these conditions. The conjugation in the (3-aryl enones provides a driving force for the elimination step. [Pg.64]

Note also the stereochemistry. In some cases, two new stereogenic centers are formed. The hydroxyl group and any C(2) substituent on the enolate can be in a syn or anti relationship. For many aldol addition reactions, the stereochemical outcome of the reaction can be predicted and analyzed on the basis of the detailed mechanism of the reaction. Entry 1 is a mixed ketone-aldehyde aldol addition carried out by kinetic formation of the less-substituted ketone enolate. Entries 2 to 4 are similar reactions but with more highly substituted reactants. Entries 5 and 6 involve boron enolates, which are discussed in Section 2.1.2.2. Entry 7 shows the formation of a boron enolate of an amide reactions of this type are considered in Section 2.1.3. Entries 8 to 10 show titanium, tin, and zirconium enolates and are discussed in Section 2.1.2.3. [Pg.67]

The first element of stereocontrol in aldol addition reactions of ketone enolates is the enolate structure. Most enolates can exist as two stereoisomers. In Section 1.1.2, we discussed the factors that influence enolate composition. The enolate formed from 2,2-dimethyl-3-pentanone under kinetically controlled conditions is the Z-isomer.5 When it reacts with benzaldehyde only the syn aldol is formed.4 The product stereochemistry is correctly predicted if the TS has a conformation with the phenyl substituent in an equatorial position. [Pg.68]

From these and many related examples the following generalizations can be made about kinetic stereoselection in aldol additions of lithium enolates. (1) The chair TS model provides a basis for analyzing the stereoselectivity observed in aldol reactions of ketone enolates having one bulky substituent. The preference is Z-enolate syn aldol /(-enolate anti aldol. (2) When the enolate has no bulky substituent, stereoselectivity is low. (3) Z-Enolates are more stereoselective than /(-enolates. Table 2.1 gives some illustrative data. [Pg.69]

The requirement that an enolate have at least one bulky substituent restricts the types of compounds that give highly stereoselective aldol additions via the lithium enolate method. Furthermore, only the enolate formed by kinetic deprotonation is directly available. Whereas ketones with one tertiary alkyl substituent give mainly the Z-enolate, less highly substituted ketones usually give mixtures of E- and Z-enolates.7 (Review the data in Scheme 1.1.) Therefore efforts aimed at increasing the stereoselectivity of aldol additions have been directed at two facets of the problem (1) better control of enolate stereochemistry, and (2) enhancement of the degree of stereoselectivity in the addition step, which is discussed in Section 2.1.2.2. [Pg.69]

Tin enolates are also used in aldol reactions.27 Both the Sn(II) and Sn(IV) oxidation states are reactive. Tin(II) enolates can be generated from ketones and Sn(II)(03SCF3)2 in the presence of tertiary amines.28 The subsequent aldol addition is syn selective and independent of enolate configuration.29 This preference arises from avoidance of gauche interaction of the aldehyde group and the enolate P-substituent. The syn stereoselectivity indicates that reaction occurs through an open TS. [Pg.76]

The Mukaiyama aldol reaction refers to Lewis acid-catalyzed aldol addition reactions of silyl enol ethers, silyl ketene acetals, and similar enolate equivalents,48 Silyl enol ethers are not sufficiently nucleophilic to react directly with aldehydes or ketones. However, Lewis acids cause reaction to occur by coordination at the carbonyl oxygen, activating the carbonyl group to nucleophilic attack. [Pg.82]


See other pages where Ketones aldol addition is mentioned: [Pg.24]    [Pg.24]    [Pg.24]    [Pg.58]    [Pg.72]    [Pg.322]    [Pg.487]    [Pg.378]    [Pg.454]    [Pg.453]    [Pg.478]    [Pg.486]    [Pg.619]    [Pg.322]    [Pg.65]   
See also in sourсe #XX -- [ Pg.154 ]




SEARCH



Addition ketones

Aldol addition

Aldol ketones

Ketones aldol addition products

© 2024 chempedia.info