Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketene acetals Diels-Alder reactions

Scheeren et al. reported the first enantioselective metal-catalyzed 1,3-dipolar cycloaddition reaction of nitrones with alkenes in 1994 [26]. Their approach involved C,N-diphenylnitrone la and ketene acetals 2, in the presence of the amino acid-derived oxazaborolidinones 3 as the catalyst (Scheme 6.8). This type of boron catalyst has been used successfully for asymmetric Diels-Alder reactions [27, 28]. In this reaction the nitrone is activated, according to the inverse electron-demand, for a 1,3-dipolar cycloaddition with the electron-rich alkene. The reaction is thus controlled by the LUMO inone-HOMOaikene interaction. They found that coordination of the nitrone to the boron Lewis acid strongly accelerated the 1,3-dipolar cycloaddition reaction with ketene acetals. The reactions of la with 2a,b, catalyzed by 20 mol% of oxazaborolidinones such as 3a,b were carried out at -78 °C. In some reactions fair enantioselectivities were induced by the catalysts, thus, 4a was obtained with an optical purity of 74% ee, however, in a low yield. The reaction involving 2b gave the C-3, C-4-cis isomer 4b as the only diastereomer of the product with 62% ee. [Pg.218]

Dipolar cydoadditions are one of the most useful synthetic methods to make stereochemically defined five-membered heterocydes. Although a variety of dia-stereoselective 1,3-dipolar cydoadditions have been well developed, enantioselec-tive versions are still limited [29]. Nitrones are important 1,3-dipoles that have been the target of catalyzed enantioselective reactions [66]. Three different approaches to catalyzed enantioselective reactions have been taken (1) activation of electron-defident alkenes by a chiral Lewis acid [23-26, 32-34, 67], (2) activation of nitrones in the reaction with ketene acetals [30, 31], and (3) coordination of both nitrones and allylic alcohols on a chiral catalyst [20]. Among these approaches, the dipole/HOMO-controlled reactions of electron-deficient alkenes are especially promising because a variety of combinations between chiral Lewis acids and electron-deficient alkenes have been well investigated in the study of catalyzed enantioselective Diels-Alder reactions. Enantioselectivities in catalyzed nitrone cydoadditions sometimes exceed 90% ee, but the efficiency of catalytic loading remains insufficient. [Pg.268]

Tocopheryl)propionic acid (50) is one of the rare examples that the o-QM 3 is involved in a direct synthesis rather than as a nonintentionally used intermediate or byproduct. ZnCl2-catalyzed, inverse hetero-Diels-Alder reaction between ortho-qui-none methide 3 and an excess of <2-methyl-C,<9-bis-(trimethylsilyl)ketene acetal provided the acid in fair yields (Fig. 6.37).67 The o-QM 3 was prepared in situ by thermal degradation of 5a-bromo-a-tocopherol (46). The primary cyclization product, an ortho-ester derivative, was not isolated, but immediately hydrolyzed to methyl 3-(5-tocopheryl)-2-trimethylsilyl-propionate, subsequently desilylated, and finally hydrolyzed into 50. [Pg.199]

Clive and coworkers have reported a total synthesis of calicheamicinone, the aglycon of the antitumor agent calicheamicin starting from the Diels-Alder reaction of methyl 3-nitro-propenoate with ketene acetal (Eq. 8.32).54 An asymmetric Diels-Alder reaction between ketene acetal presented in Eq. 8.32 and 3-nitropropenoate derived from (-)-8-phenyl-menthol affords the optically pure adduct, which can be converted into either enantiomer of calicheamicinone (Eq. 8.33).55... [Pg.247]

Diels-Alder reactions [31] and 1,3-dipolar cycloadditions [32, 33] have been performed by use of this methodology. For example, Diaz-Ortiz described the hetero-Diels-Alder and 1,3-dipolar cycloaddition reactions of ketene acetals. The reactions were improved and products were isolated directly from the crude reaction mixture without polymerization of the ketene acetals [34],... [Pg.299]

The inverse-electron-demand Diels-Alder reaction of 3,6-dichloro[l,2,4,5]tetrazine with alkenes and alkynes provides the synthesis of highly functionalized pyridazines. ° Also, the 4 + 2-cycloaddition reactions of the parent [l,2,4,5]tetrazine with donor-substituted alkynes, alkenes, donor-substituted and unsubstituted cycloalkenes, ketene acetals, and aminals have been investigated. ... [Pg.472]

The reactivity of the produced complexes was also examined [30a,b]. Since the benzopyranylidene complex 106 has an electron-deficient diene moiety due to the strong electron-withdrawing nature of W(CO)5 group, 106 is expected to undergo inverse electron-demand Diels-Alder reaction with electron-rich alkenes. In fact, naphthalenes 116 variously substituted at the 1-, 2-, and 3-positions were prepared by the reaction of benzopyranylidene complexes 106 and typical electron-rich alkenes such as vinyl ethers, ketene acetals, and enamines through the Diels-Alder adducts 115, which simultaneously eliminated W(CO)6 and an alcohol or an amine at rt (Scheme 5.35). [Pg.180]

Diels-Alder reactions have featured heavily during the period of review. Ar-Vinyl-2-oxazolidinone has been reported as a dienophile for the first time, including the preparation of various tetrahydro-277,77/-pyrano[4,3-. ]pyrans <2002SL952>. The heterodiene cycloaddition reaction of 3-formylchromone with a series of ketene acetals formed from C2-symmetric l,2-diarylethane-l,2-diols is completely diastereoselective (Scheme 40) <1995J(P1)2293>. [Pg.732]

Efficient synthetic methods have been developed for the synthesis of 4-functionalized quinolines mediated by triflic acid.703 Electron-rich, highly reactive ethynyl ketene-S,5-acetals react readily with arylamines and aldehydes in an aza-Diels-Alder reaction to afford the desired products [Eq. (5.256)]. Arylimines and ethynyl ketene-S,5-acetals react similarly (60-70% yields). [Pg.687]

Chiral dienes have proved to be less popular in asymmetric Diels-Alder reactions than their chiral dienophile counterparts. This is primarily a result of the problem of designing a molecule that incorporates a chiral moiety, such as the formation of a chiral isoprenyl ether or vinyl ketene acetal.187-190 In addition, diastereoselectivities often are not high,54 191-199 as illustrated by the cycloaddition of the chiral butadiene 5 with acrolein (Scheme 26.4). Improved stereoselection is observed through the use of double asymmetric induction, although this is a somewhat wasteful protocol.35,54 177 200... [Pg.510]

As already mentioned, hetero Diels-Alder reactions can be accelerated by applying Lewis acids and high pressure. However, also the application of microwaves can increase the reaction rate [574], Thus, the usually little reactive methyl vinyl ketone 9-19 cycloadded to highly sensitive ketene acetals such as 9-18 within 10 min at 20 °C under microwave irradiation to give the dihydropyran 9-20 in 69% yield. Using other ketene acetals yields of up to 95% could be achieved (Fig. 9-6). [Pg.106]

Roush WR, Hall SE (1981) Studies on the total synthesis of chlorothricol-ide stereochemical aspects of the intramolecular Diels-Alder reactions of methyl undeca-2,8,10-trienoates. J Am Chem Soc 103 5200-5211 Rudler H, Denise B, Xu Y, Parlier A, Vaissermann J (2005) Bis(trimethylsilyl)-ketene acetals as C,0-dinucleophiles one-pot formation of polycyclic y-and 8-lactones from pyridines and pyrazines. Eur J Org Chem 3724-2744 Sekino E, Kumamoto T, Tanaka T, Ikeda T, Ishikawa T (2004) Concise synthesis of anti-HIV-1 Active (+)-inophyllum B and (+)-calanolide A by application of (-)-quinine-catalyzed intramolecular oxo-michael addition. J Org Chem 69 2760-2767... [Pg.138]

The hetero-Diels-Alder reaction is amongst the most efficient processes for the synthesis of six-membered heterocyclic ring systems. Solvent-free conditions have been used to improve reactions of heterodienophiles and heterodynes with low reactivities. Cado et al. (1997) have described the hetero-Diels-Alder reaction of ethyl lH-perimidine-2-acetate as heterocyclic ketene aminal with ethyl propiolate nnder solvent-free conditions with focused microwave irradiation. The new fused perimi-dines (23) were obtained in good yields (67-98%). [Pg.175]

Cado, R, Jacquault, P, Dozias, M.J., Bazureau, J.P., and Hamelin, J. 1997. Tandem conjugate carbon addition-intermolecularhetero Diels-Alder reactions using ethyl IH-perimidine-2-acetate as a ketene aminal with heating or microwave activation. Journal of Chemical Research, 176-77. [Pg.207]

Scheme 15. Diels-Alder reaction using ketene acetal 51 and base-catalyzed air oxidation at C-1 [47]... Scheme 15. Diels-Alder reaction using ketene acetal 51 and base-catalyzed air oxidation at C-1 [47]...
Three successive [2+4] cycloadditions were used in the synthesis of the pentacyclic methyl ether of G-2N by Kraus and Zhao [92] and later, by a slightly modified procedure, also of the natural product G-2N (118) [93] (Scheme 31). Thermal reaction of the cyclobutanol 112 with acrylic ester gave the dihydronaphthalene 113 which was demethylated by treatment with boron tribromide and converted into the exocyclic ketene acetal 114. This unstable diene was reacted in a second cycloaddition with 2,6-dichlorobenzoquinone (115) to afford the tetracyclic chloroquinone 116. In a last Diels-Alder reaction, ring E was anella-ted by treatment of 116 with l-methoxy-l,3-bis[(trimethylsilyl)oxy]-l,3-buta-diene (117) to yield the pentacyclic natural product G-2N (118) [93]. [Pg.146]

Simple a,3-unsaturated aldehydes, ketones, and esters (R = C02Me H > alkyl, aryl OR equation l)i, 60 preferentially participate in LUMOdiene-controlled Diels-Alder reactions with electron-rich, strained, and selected simple alkene and alkyne dienophiles, - although the thermal reaction conditions required are relatively harsh (150-250 C) and the reactions are characterized by the competitive dimerization and polymerization of the 1-oxa-1,3-butadiene. Typical dienophiles have included enol ethers, thioenol ethers, alkynyl ethers, ketene acetals, enamines, ynamines, ketene aminals, and selected simple alkenes representative examples are detailed in Table 2. - The most extensively studied reaction in the series is the [4 + 2] cycloaddition reaction of a,3-unsaturated ketones with enol ethers and E)esimoni,... [Pg.453]

Until recently, the reaction of a,p-unsatuiated esters with electron-rich alkenes has been reported to provide cyclobutane [2 + 2] cycloaddition products. Amice and Conia first proposed the intermediacy of [4 + 2] cycloadducts in the reaction of ketene acetals with methyl acrylate, and the first documented example of the 4ir participation of an a,3-unsaturated ester in a Diels-Alder reaction appears to be the report of Snider and coworkers in their description of the reversible, intramolecular [4 + 2] cycloaddition reaction of l-allylic-2,2-dimethyl ethylenetricarboxylates. Subsequent efforts have demonstrated that substitution of an a, -unsaturated ester with a C-3 electron-withdrawing substituent may permit their well-behaved 4ir participation in LUMOdiene-controlled Diels-Alder reactions (equation 3). ... [Pg.461]

The aldol reaction of ketene silyl acetals with several aldehydes (Mukaiyama aldol reaction) assisted by Li has been described briefly by Reetz et al. Wirth 5.0 m LPDE a clean reaction began within 1 h with the sole formation of the silylated aldol 112, whereas the use of a catalytic amount (3 mol %) of LiC104 in Et20 (3 mol % LPDE) required a reaction time of 5 days for 86 % conversion. As observed in the hetero-Diels-Alder reaction of a-alkoxyaldehyde, the higher rate of reaction of 79 compared with that of benzaldehyde can be attributable to chelation. Indeed, the use of 3 mol % LPDE required only 20 h at room temperature for complete uptake of 79 with a diastereoselectivity (syn-113lanti-113) of >96 % (Sch. 55). [Pg.45]

The use of CABs prepared from the sulfonamides of amino acids to introduce asymmetry into the Diels-Alder reaction was reported simultaneously by Takasu and Yamamoto [14] and by Helmchen and co-workers [13]. Because of the capacity of boron to complex the carbonyl moiety in this type of eatalyst, it is clear they might be effective in promoting the reaction of silyl ketene acetals with various aldehydes. [Pg.162]

Yamamoto and co-workers found that 27 is an excellent chiral promoter not only for the aza Diels-Alder reaction of aldimines [40] but also for the stereoselective aldol-type reaction of aldimines with ketene silyl acetals [55]. The reaction of (5)-benzyli-dene a-methylbenzylamine with trimethylsilyl ketene acetal derived from terf-butyl acetate in the presence of (R)-27 produces the (R) adduct in > 92 % diastereomeric excess (de), whereas reaction with (5)-27 gives the adduct in 74 % de. In a similar way, (5)-butylidene a-methylbenzylamine, an aliphatic imine, can be converted to the (R)-)3-amino ester in 94 % de by use of (R)-27 (Eq. 73). [Pg.180]

It is important to emphasize that three different types of reactions, i.e., electron transfer from (TPP)Co to Q (Eq. 13), Diels-Alder reaction of anthracenes with Q (Scheme 12) and hydride transfer from BNAH to Q (Scheme 14), have the common rate-determining step of Mg +-catalyzed electron transfer from these electron donors to Q. In each case, the relative catalytic dependence of A obs on [Mg ] is the same as indicated by Eq. 14, irrespective of different electron donors. The nucleophilic addition of a / ,/ -dimethyl-substituted ketene silyl acetal such as Me2C= C(OMe)OSiMe3 is also catalyzed by Mg + in MeCN [227, 228]. No reaction takes... [Pg.2407]


See other pages where Ketene acetals Diels-Alder reactions is mentioned: [Pg.210]    [Pg.69]    [Pg.250]    [Pg.487]    [Pg.355]    [Pg.189]    [Pg.283]    [Pg.210]    [Pg.533]    [Pg.533]    [Pg.701]    [Pg.58]    [Pg.234]    [Pg.278]    [Pg.272]    [Pg.250]    [Pg.543]    [Pg.26]    [Pg.91]    [Pg.1350]    [Pg.140]    [Pg.75]    [Pg.304]    [Pg.72]    [Pg.73]    [Pg.533]   
See also in sourсe #XX -- [ Pg.461 ]

See also in sourсe #XX -- [ Pg.5 , Pg.461 ]

See also in sourсe #XX -- [ Pg.461 ]

See also in sourсe #XX -- [ Pg.5 , Pg.461 ]




SEARCH



Acetic Diels-Alder

Keten acetal

Keten acetals Diels-Alder reaction with

Ketene acetal

Ketene reaction

Ketenes acetals

Ketenes reactions

© 2024 chempedia.info