Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isoxazole aldehydes

Isoxazole-3-carbaldehyde has been obtained as a minor product from the reaction of acetylene with a mixture of nitric oxide and nitrogen dioxide (61JOC2976). Although 3-aryl-4-formylisoxazoles have been synthesized in good yields from the reaction of benzonitrile Af-oxides with 3-(dimethylamino)-2-propen-l-one (71S433), the parent member of the series, isoxazole-4-carbaldehyde, has never been reported. It may possibly be obtained by the addition of fulminic acid to 3-(dimethylamino)-2-propen-l-one. [Pg.84]

Isoxazole-5-carbaldehyde was prepared by the manganese dioxide oxidation of 5-hydroxymethylisoxazole (67T4697), the latter being formed from sodium fulminate and propargyl alcohol in greater than 90% yield. [Pg.84]

A variety of other isoxazole aldehydes has also been reported (62HC(17)l, p. 77). [Pg.84]


The isomeric isoxazole-substituted phosphine oxides (61) and (63) have been synthesised and used in Horner-Wittig reactions to prepare isoxazoles of types (62) and (64) regiospecifically.32 An alternative approach to (62) and (64) involves reaction of the isoxazole aldehydes (e.g. 65) with alkyldiphenylphosphine oxide anions (Scheme 11). The routes described have been applied to the synthesis of isoxazoles containing leukotriene-like carbon chains. [Pg.84]

The isoxazoles (585) were formed regioselectively from the (dioxoalkyl)phosphonium salts (584) with hydroxylamine hydrochloride, the direction of cyclization being different from that of the nonphosphorus-containing 1,3-dioxo compound (see Chapter 4.16). Aqueous sodium hydroxide converted (585) into the isoxazole (586) and triphenylphosphine oxide. Treatment of (585) with n-butyllithium and an aldehyde gave the alkene (587). With hydrazine or phenylhydrazine analogous pyrazoles were formed (80CB2852). [Pg.165]

To synthesize 3-substituted isoxazoles directly, Kochetkov and Khomutova have used the reaction of ethyleneacetals of )S-keto-aldehydes (readily available from jS-chlorovinylketones) with hydroxylamine. Owing to the comparative stability of the dioxolane group, this reaction yields unequivocally the pure 3-substituted isomers (22—>23). The use of noncyclic alkyl )S-ketoacetals in this reaction results in a mixture of 3- and 5-substituted isomers. ... [Pg.371]

One of the most important routes to isoxazole and isoxazoline rings involving the formation of the 1—5 and 2—3 bonds involves the condensation of hydroxylamine with a,/8-unsaturated carbonyl compounds. This method was previously widely used, but it is now of no preparative value, though it has been recently applied to determine the configuration of oximes. " The only new modification of this synthesis is the use of the acetals (27) of a,/8-acetylenic aldehydes for preparation of 5-substituted isoxazoles (28)... [Pg.372]

Further, isoxazole derivatives were subjected to two related reactions. 3,5-Dimethylisoxazole was found to react in the presence of dry hydrogen chloride with aromatic aldehydes (chlorobenzylation, 72- 71),and with formaldehyde in the presence of sulfuric acid it undergoes hydroxymethylation (72- 73). ... [Pg.388]

Nucleophilic substitution of the halogen atom of halogenomethylisoxazoles proceeds readily this reaction does not differ essentially from that of benzyl halides. One should note the successful hydrolysis of 4-chloromethyl- and 4-(chlorobenzyl)-isoxazoles by freshly precipitated lead oxide, a reagent seldom used in organic chemistry. Other halides, ethers, and esters of the isoxazole series have been obtained from 3- and 4-halogenomethylisoxazoles, and 3-chloro-methylisoxazole has been reported in the Arbuzov rearrangement. Panizzi has used dichloromethylisoxazole derivatives to synthesize isoxazole-3- and isoxazole-5-aldehydes/ ... [Pg.393]

Among other reactions proceeding with the retention of the heterocyclic nucleus may be noted the synthesis of amino acids of the isoxazole series from isoxazole-5-aldehydes/ the successful extension of the Schmidt reaction to 3-acylisoxazoles, and the synthesis of various polycyclic heterocycles, e.g. 101 102, involving the isoxa-... [Pg.397]

Although a number of reagents can be used to reduce an isoxazole ring, molybdenum hexacarbonyl31 was selected for use in this synthesis. The action of this reagent on 24 reduces the weak N-0 bond of the isoxazole ring and produces a //-amino-a,//-unsaturated aldehyde (i.e. a vinylogous formamide) (see Scheme 19). Intermediate 87 forms smoothly upon deprotection of the terminal acetylene carbon with basic methanol-THF. [Pg.553]

Both of the 4,5-tran.v-diaslereomers of 4,5-dihydro-4-(4-methoxyphenyl)-5-methyl-3-[(7 )-(4-methylphenylsulfinyl)methyl]isoxazole (24) show excellent stereoselection in reactions with aldehydes. Despite the bulky substituents at the 4,5-dihydroisoxazole nucleus, the stereochemical outcome of the reaction is controlled by the sulfoxide stereogenicity. The pairs of 4,5-dihydro-3-(2-hydroxyalkyl)-4-(4-methoxyphenyl)-5-methylisoxazoles, obtained by desulfurization of the corresponding aldol adducts, have the same configuration at the hydroxy-substituted carbon (C-2 ) and opposite configuration in the 4- and 5-positions of the dihydroisoxazole ring24. [Pg.617]

Aluminum oxide catalyzed addition of ethyl nitroacetate to racemic 2,3-cpoxy aldehydes 7 affords substituted 4,5-dihydroisoxazole 2-oxides through a regio- and stereospecific tandem nitroaldol cyclization process. High diastereoselectivities are observed in the reaction of cis-epoxyaldehydes to yield the ethyl, vi7 -4.5-dihydro-4-hydroxy-5-( I -hydroxyalkyl)-3-isoxazole-carboxylate 2-oxides, with tram configuration at the ring positions, whereas reactions of trans-and 3,3-disubstituted 2,3-epoxyaldehydes proceed with lower selectivities28. [Pg.633]

Propiolaldehyde diethyl acetal has found numerous synthetic applications in the literature which may be briefly summarized. The compound has been utilized in the synthesis of unsaturated and polyunsaturated acetals and aldehydes by alkylation of metal-lated derivatives, " by Cadiot-Chodkiewicz coupling with halo acetylenes, " and by reaction with organocuprates. Syntheses of heterocyclic compounds including pyrazoles, isoxazoles, triazoles, and pyrimidines have employed this three-carbon building block. Propiolaldehyde diethyl acetal has also been put to use in the synthesis of such natural products as polyacetylenes " and steroids. ... [Pg.8]

Although the unsaturated nitrile oxides 124 can be prepared via the aldoxime route (see Scheme 8), the older procedure suffers from the disadvantage that a tenfold excess of allyl alcohol and two additional steps are required when compared to Scheme 15. Therefore, unsaturated nitro ether 123 that can be prepared by condensation of an aldehyde 120 and a nitro alkane followed by Michael addition of alcohol 122, was a useful precursor to nitrile oxide 124 [381. The nitrile oxide 124 spontaneously cyclized to ether 125. This procedure is particularly suitable for the synthesis of tetrahydrofurans (125a-h) and tetrahydropyrans (125i-k) possessing Ar substituents in 72-95% yield (Table 12). The seven-membered ether 1251 was obtained only in 30% yield on high dilution. The acetylenic nitro ether 126 underwent INOC reaction to provide the isoxazole 127. [Pg.18]

Compounds of this type with an electron-withdrawing substituent at C-a can be easily prepared by condensation of 2-(benzotriazol-l-yl)acetophenone 869 with aldehydes. Exclusively (E) isomers of a,(l-unsaturated ketones 870 are formed. Treatment with hydrazines converts derivatives 870 into pyrazolines 871. Elimination of benzotriazole from 871 in the presence of mild bases furnishes pyrazoles 872. When in these reactions hydroxylamine is used instead of hydrazines, the corresponding isoxazoles are obtained (Scheme 141) <2001JOC6787>. [Pg.97]

Isoxazoles 88 can serve as a convenient masked form of aldehydes and ketones (84H(22)1, 85JCS(P1)2581). They can be cleaved by EtONa in the presence of aldehydes. The 3-oxonitriles, generated in situ, react as aldehydes with UCC 26 formation, followed by reaction with MN 27a to give pyrans 89. The yields are usually low, rarely reaching 60-76%, but the access to 6-unsubstituted pyrans should be regarded as the advantage of this method (Scheme 25). [Pg.196]

Our synthesis started with ethyl 5-methyl-4-isoxazole carboxylate (50), prepared from ethyl acetoacetate and DMF dimethyl acetal (Scheme 5.4).14 Ester 50 was reduced with LiAlH4 and the resulting alcohol was oxidized to afford aldehyde 51. Enone 52 was obtained from aldehyde 51 using conditions developed by McCurry and Singh.15 The next step was the aromatization of the cyclohexane ring of 52 to produce the aromatic "A" ring of the monomer. Treatment of enone 52 with iodine in the presence of sodium ethoxide produced phenol 53.16... [Pg.76]


See other pages where Isoxazole aldehydes is mentioned: [Pg.84]    [Pg.84]    [Pg.84]    [Pg.1184]    [Pg.394]    [Pg.84]    [Pg.84]    [Pg.84]    [Pg.1184]    [Pg.394]    [Pg.40]    [Pg.53]    [Pg.71]    [Pg.77]    [Pg.87]    [Pg.688]    [Pg.86]    [Pg.99]    [Pg.376]    [Pg.396]    [Pg.533]    [Pg.533]    [Pg.553]    [Pg.106]    [Pg.563]    [Pg.60]    [Pg.139]    [Pg.188]    [Pg.27]    [Pg.220]    [Pg.105]    [Pg.267]    [Pg.152]    [Pg.426]   


SEARCH



© 2024 chempedia.info