Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isotopes decay process

The radioactive isotope of 13AI has a characteristic decay process that includes the release of a beta particle and a gamma ray. [Pg.645]

The study of the chemical behavior of concentrated preparations of short-Hved isotopes is compHcated by the rapid production of hydrogen peroxide ia aqueous solutions and the destmction of crystal lattices ia soHd compounds. These effects are brought about by heavy recoils of high energy alpha particles released ia the decay process. [Pg.216]

Decay products of the principal radionuclides used in tracer technology (see Table 1) are not themselves radioactive. Therefore, the primary decomposition events of isotopes in molecules labeled with only one radionuclide / molecule result in unlabeled impurities at a rate proportional to the half-life of the isotope. Eor and H, impurities arising from the decay process are in relatively small amounts. Eor the shorter half-life isotopes the relative amounts of these impurities caused by primary decomposition are larger, but usually not problematic because they are not radioactive and do not interfere with the application of the tracer compounds. Eor multilabeled tritiated compounds the rate of accumulation of labeled impurities owing to tritium decay can be significant. This increases with the number of radioactive atoms per molecule. [Pg.438]

All radioactive decay processes follow first-order kinetics. The half-life of the radioactive isotope tritium (3H, or T) is 12.3 years. How much of a 25.0-mg sample of tritium would remain after 10.9 years ... [Pg.697]

Two of these isotopes, carbon-12, the most abundant, and carbon-13 are stable. Carbon-14, on the other hand, is an unstable radioactive isotope, also known as radiocarbon, which decays by the beta decay process a beta particle is emitted from the decaying atomic nucleus and the carbon-14 atom is transformed into an isotope of another element, nitrogen-14, N-14 for short (chemical symbol 14N), the most common isotope of nitrogen ... [Pg.299]

For many of the analytical techniques discussed below, it is necessary to have a source of X-rays. There are three ways in which X-rays can be produced in an X-ray tube, by using a radioactive source, or by the use of synchrotron radiation (see Section 12.6). Radioactive sources consist of a radioactive element or compound which spontaneously produces X-rays of fixed energy, depending on the decay process characteristic of the radioactive material (see Section 10.3). Nuclear processes such as electron capture can result in X-ray (or y ray) emission. Thus many radioactive isotopes produce electromagnetic radiation in the X-ray region of the spectrum, for example 3He, 241Am, and 57Co. These sources tend to produce pure X-ray spectra (without the continuous radiation), but are of low intensity. They can be used as a source in portable X-ray devices, but can be hazardous to handle because they cannot be switched off. In contrast, synchrotron radiation provides an... [Pg.99]

A particular hazard, which has been with humans since the beginning of time, is the radioactive isotope potassium-40 (K-40). Less than 1% of all potassium atoms on Earth are in the form of this radioactive isotope. It has a half-life of 1.25 billion years. Its decay process... [Pg.56]

Given that all isotopes of francium are radioactive with relatively short half-lives, there are few practical uses for it—except as a source of radiation to study the radioactive decay process. [Pg.64]

Various radium isotopes are derived through a series of radioactive decay processes. For example, Ra-223 is derived from the decay of actinium. Ra-228 and Ra-224 are the result of the series of thorium decays, and Ra-226 is a result of the decay of the uranium series. [Pg.81]

Radium is extremely radioactive. It glows in the dark with a faint bluish light. Radiums radioisotopes undergo a series of four decay processes each decay process ends with a stable isotope of lead. Radium-223 decays to Pb-207 radium-224 and radium-228decay to Pb-208 radium-226 decays to Pb-206 and radium-225 decays to Pb-209. During the decay processes three types of radiation—alpha (a), beta ((5), and gamma (y)—are emitted. [Pg.82]

Chemists of the early twentieth century tried to find the existence of element 85, which was given the name eka-iodine by Mendeleev in order to fill the space for the missing element in the periodic table. Astatine is the rarest of all elements on Earth and is found in only trace amounts. Less than one ounce of natural astatine exists on the Earth at any one time. There would be no astatine on Earth if it were not for the small amounts that are replenished by the radioactive decay process of uranium ore. Astatine produced by this uranium radioactive decay process soon decays, so there is no long-term build up of astatine on Earth. The isotopes of astatine have very short half-lives, and less than a gram has ever been produced for laboratory study. [Pg.258]

Californium is a synthetic radioactive transuranic element of the actinide series. The pure metal form is not found in nature and has not been artificially produced in particle accelerators. However, a few compounds consisting of cahfornium and nonmetals have been formed by nuclear reactions. The most important isotope of cahfornium is Cf-252, which fissions spontaneously while emitting free neutrons. This makes it of some use as a portable neutron source since there are few elements that produce neutrons all by themselves. Most transuranic elements must be placed in a nuclear reactor, must go through a series of decay processes, or must be mixed with other elements in order to give off neutrons. Cf-252 has a half-life of 2.65 years, and just one microgram (0.000001 grams) of the element produces over 170 mhhon neutrons per minute. [Pg.327]

Fermium does not exist in nature. All of it is artificially produced in cyclotrons, isotope particle accelerators, or nuclear reactors by a very complicated decay process involving six steps of nuclear bombardment followed by the decay of beta particles, as follows ... [Pg.331]

Dubnium s (Unp) most stable isotope, Db-268, is unstable with a half-life of 16 houts. It can change into lawtencium-254 by alpha decay ot into tuthetfotdium-268 by electton cap-tute. Both of these teactions occut thtough a series of decay processes and spontaneous fission (SF). Since so few atoms of unnilpentium (dubnium) are produced, and they have such a short half-life, its melting point, boiling point, and density cannot be determined. In addition, its valence and oxidation state are also unknown. [Pg.344]

Table 11.2 Naturally occurring radioactive substances, a = years, d = days. Radionuclide Decay Process Half-Life Isotopic Abundance (%) Stable End-Product... Table 11.2 Naturally occurring radioactive substances, a = years, d = days. Radionuclide Decay Process Half-Life Isotopic Abundance (%) Stable End-Product...
Let us consider, for instance, the decay process of the unstable oxygen isotope... [Pg.719]

This reading of the situation is supported by parallel studies of BrCH2CD2CH2Br. The fact that time-dependent decays of 42 and 43 amu signals—stand-ins for the BrCH2CD2CH2 radical— both show Tc = 7.5 ps, that is, no isotope effect, implies that the decay process does not involve rupture of a C D bond. The loss of HBr or DBr occurs after the monobromo radical is ionized by the probe pulse. [Pg.910]


See other pages where Isotopes decay process is mentioned: [Pg.442]    [Pg.48]    [Pg.85]    [Pg.594]    [Pg.69]    [Pg.18]    [Pg.57]    [Pg.66]    [Pg.69]    [Pg.500]    [Pg.504]    [Pg.526]    [Pg.573]    [Pg.166]    [Pg.132]    [Pg.310]    [Pg.422]    [Pg.125]    [Pg.238]    [Pg.31]    [Pg.711]    [Pg.717]    [Pg.766]    [Pg.11]    [Pg.48]    [Pg.41]    [Pg.44]    [Pg.475]    [Pg.479]    [Pg.501]    [Pg.209]    [Pg.89]   
See also in sourсe #XX -- [ Pg.719 , Pg.742 , Pg.744 , Pg.763 , Pg.766 , Pg.779 ]




SEARCH



Decay process

Isotope process

Isotopes double decay process

Processes isotopic

© 2024 chempedia.info