Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isothermal extraction

Fig. 3.5.9 NMR measured local adsorption/desorption isotherms extracted from ROIs within the (a) Al203 and (b) ZnO ceramics shown in Figure 3.5.8. Adapted from Ref [21]. Fig. 3.5.9 NMR measured local adsorption/desorption isotherms extracted from ROIs within the (a) Al203 and (b) ZnO ceramics shown in Figure 3.5.8. Adapted from Ref [21].
The adsorption/desorption isotherms measured by NMR (equivalent to conventionally measured isotherms), extracted from two different regions of the imaging field of view corresponding to the two ceramics, are shown in Figure 3.5.9. Once these local isotherms are extracted, they are simply the local adsorption for that point in space contained within the material, measured non-invasively and non-destructively. Conventional analysis techniques for adsorption isotherms (such as BET theory) can therefore be applied to the data, to determine the microstructural properties corresponding to that isotherm curve. [Pg.318]

Water uptake of Nafion 117. (a) Isopiestic water sorption data (extracted from T. E. Springer et al. Journal of the Electrochemical Society 138 (1991) 2334-2342) fitted by Equation (6.7) (b) capillary isotherms (extracted from J. Divisek et al.. Journal of the Electrochemical Society 145 (1998) 2677-2683) fitted by Equation (6.8). [Pg.374]

As we have seen, an adsorption isotherm is one way of describing the thermodynamics of gas adsorption. However, it is by no means the only way. Calorimetric measurements can be made for the process of adsorption, and thermodynamic parameters may be evaluated from the results. To discuss all of these in detail would require another chapter. Rather than develop all the theoretical and experimental aspects of this subject, therefore, it seems preferable to continue focusing on adsorption isotherms, extracting as much thermodynamic insight from this topic as possible. Within this context, results from adsorption calorimetry may be cited for comparison without a full development of this latter topic. [Pg.433]

We have repeatedly observed that the slowly converging variables in liquid-liquid calculations following the isothermal flash procedure are the mole fractions of the two solvent components in the conjugate liquid phases. In addition, we have found that the mole fractions of these components, as well as those of the other components, follow roughly linear relationships with certain measures of deviation from equilibrium, such as the differences in component activities (or fugacities) in the extract and the raffinate. [Pg.124]

A procedure involving only the wall area and based on the cylindrical pore model was put forward by Pierce in 1953. Though simple in principle, it entails numerous arithmetical steps the nature of which will be gathered from Table 3.3 this table is an extract from a fuller work sheet based on the Pierce method as slightly recast by Orr and DallaValle, and applied to the desorption branch of the isotherm of a particular porous silica. [Pg.136]

The (I)-(III)-samples sorption ability investigation for cationic dyes microamounts has shown that for DG the maximum rate of extraction is within 70-90 % at pH 3. The isotherm of S-type proves the physical character of solution process and a seeming ionic exchange. Maximal rate of F extraction for all samples was 40-60 % at pH 8 due to electrostatic forces. The anionic dyes have more significant affinity to surface researching Al Oj-samples comparatively with cationic. The forms of obtained soi ption isotherms atpH have mixed character of H,F-type chemosorption mechanism of fonuation of a primary monolayer with the further bilayers formation due to H-bonds and hydrophobic interactions. The different values of pH p for sorbents and dyes confirm their multifunctional character and distinctions in the acid-base properties of adsoi ption centers. [Pg.266]

Figure 10.1 Analysis of racemic 2,5-dimethyl-4-hydroxy-3[2H]-furanone (1) obtained from a strawbeny tea, flavoured with the synthetic racemate of 1 (natural component), using an MDGC procedure (a) dichloromethane extract of the flavoured strawbeny tea, analysed on a Carbowax 20M pre-column (60 m, 0.32 mm i.d., 0.25 p.m film thickness earner gas H2, 1.95 bar 170 °C isothermal) (b) chirospecific analysis of (1) from the sti awbeny tea exti act, ti ansfened foi stereoanalysis by using a pemiethylated /3-cyclodextrin column (47 m X 0.23 mm i.d. canier gas H2, 1.70 bar 110 °C isothemial). Reprinted from Journal of High Resolution Chromatography, 13, A. Mosandl et al., Stereoisomeric flavor compounds. XLIV enantioselective analysis of some important flavor molecules , pp. 660-662, 1990, with permission from Wiley-VCH. Figure 10.1 Analysis of racemic 2,5-dimethyl-4-hydroxy-3[2H]-furanone (1) obtained from a strawbeny tea, flavoured with the synthetic racemate of 1 (natural component), using an MDGC procedure (a) dichloromethane extract of the flavoured strawbeny tea, analysed on a Carbowax 20M pre-column (60 m, 0.32 mm i.d., 0.25 p.m film thickness earner gas H2, 1.95 bar 170 °C isothermal) (b) chirospecific analysis of (1) from the sti awbeny tea exti act, ti ansfened foi stereoanalysis by using a pemiethylated /3-cyclodextrin column (47 m X 0.23 mm i.d. canier gas H2, 1.70 bar 110 °C isothemial). Reprinted from Journal of High Resolution Chromatography, 13, A. Mosandl et al., Stereoisomeric flavor compounds. XLIV enantioselective analysis of some important flavor molecules , pp. 660-662, 1990, with permission from Wiley-VCH.
Fig. 130 Isotherms of tantalum extraction (curve 1) and stripping (curve 2) at 25°C (after Agulyansky et al., [473]). Fig. 130 Isotherms of tantalum extraction (curve 1) and stripping (curve 2) at 25°C (after Agulyansky et al., [473]).
Adsorption, like extraction, depends on equilibrium relationships. Isothermal adsorption is projected by Langmuir isotherms. The model is shown in Figure 7.14, which is based on the linear model of the following equation ... [Pg.186]

The thermodynamic aspect of osmotic pressure is to be sought in the expenditure of work required to separate solvent from solute. The separation may be carried out in other ways than by osmotic processes thus, if we have a solution of ether in benzene, we can separate the ether through a membrane permeable to it, or we may separate it by fractional distillation, or by freezing out benzene, or lastly by extracting the mixture with water. These different processes will involve the expenditure of work in different ways, but, provided the initial and final states are the same in each case, and all the processes are carried out isothermally and reversibly, the quantities of work are equal. This gives a number of relations between the different properties, such as vapour pressure and freezing-point, to which we now turn our attention. [Pg.288]

The SH signal directly scales as the square of the surface concentration of the optically active compounds, as deduced from Eqs. (3), (4), and (9). Hence, the SHG technique can be used as a determination of the surface coverage. Unfortunately, it is very difficult to obtain an absolute calibration of the SH intensity and therefore to determine the absolute number for the surface density of molecules at the interface. This determination also entails the separate measurement of the hyperpolarizability tensor jS,-, another difficult task because of local fields effects as the coverage increases [53]. However, with a proper normalization of the SH intensity with the one obtained at full monolayer coverage, the adsorption isotherm can still be extracted through the square root of the SH intensity. Such a procedure has been followed at the polarized water-DCE interface, for example, see Fig. 3 in the case of 2-( -octadecylamino)-naphthalene-6-sulfonate (ONS) [54]. The surface coverage 6 takes the form ... [Pg.144]

The second example is the extraction of Ni(II) with 2-hydroxy oxime. 2-Hydroxy oxime including 5-nonylsalicylaldoxime (P50) [15], 2-hydroxy-5-nonylacetophenone oxime (SME529) [16], and 2-hydroxy-5-nonylbenzophenone oxime (LIX65N) [17], are widely used as commercial extractants of Ni(II), Cu(II), and Co(II) in hydrometallurgy. These extractants are adsorbed at the interface even in their neutral forms following the Langmuir isotherm,... [Pg.366]

Fig. 3.5.8 Schematic and NMR image of C4F8 gas at 80 kPa in a hybrid phantom containing Vycor glass, a nanoparticulate AI2O3 powder, a nanoparticulate ZnO powder and sintered ceramics made from each of these powders. Dashed boxes indicate the regions of interest (ROIs) from which the isotherms in Figure 3.5.9 were extracted. Adapted from Ref. [21]. Fig. 3.5.8 Schematic and NMR image of C4F8 gas at 80 kPa in a hybrid phantom containing Vycor glass, a nanoparticulate AI2O3 powder, a nanoparticulate ZnO powder and sintered ceramics made from each of these powders. Dashed boxes indicate the regions of interest (ROIs) from which the isotherms in Figure 3.5.9 were extracted. Adapted from Ref. [21].
Essentially, extraction of an analyte from one phase into a second phase is dependent upon two main factors solubility and equilibrium. The principle by which solvent extraction is successful is that like dissolves like . To identify which solvent performs best in which system, a number of chemical properties must be considered to determine the efficiency and success of an extraction [77]. Separation of a solute from solid, liquid or gaseous sample by using a suitable solvent is reliant upon the relationship described by Nemst s distribution or partition law. The traditional distribution or partition coefficient is defined as Kn = Cs/C, where Cs is the concentration of the solute in the solid and Ci is the species concentration in the liquid. A small Kd value stands for a more powerful solvent which is more likely to accumulate the target analyte. The shape of the partition isotherm can be used to deduce the behaviour of the solute in the extracting solvent. In theory, partitioning of the analyte between polymer and solvent prevents complete extraction. However, as the quantity of extracting solvent is much larger than that of the polymeric material, and the partition coefficients usually favour the solvent, in practice at equilibrium very low levels in the polymer will result. [Pg.61]

Figure 19.7 Streams should be assumed to mix isothermally for Fi8ure 198 Data must be extracted at effective temperatures. Figure 19.7 Streams should be assumed to mix isothermally for Fi8ure 198 Data must be extracted at effective temperatures.
The two network precursors and solvent (if present) were combined with 20 ppm catalyst and reacted under argon at 75°C to produce the desired networks. The sol fractions, ws, and equilibrium swelling ratio In benzene, V2m, of these networks were determined according to established procedures ( 1, 4. Equilibrium tensile stress-strain Isotherms were obtained at 25 C on dumbbell shaped specimens according to procedures described elsewhere (1, 4). The data were well correlated by linear regression to the empirical Mooney-Rivlin (6 ) relationship. The tensile behavior of the networks formed In solution was measured both on networks with the solvent present and on networks from which the oligomeric PEMS had been extracted. [Pg.332]


See other pages where Isothermal extraction is mentioned: [Pg.318]    [Pg.308]    [Pg.1068]    [Pg.318]    [Pg.308]    [Pg.1068]    [Pg.660]    [Pg.413]    [Pg.366]    [Pg.2001]    [Pg.457]    [Pg.1282]    [Pg.63]    [Pg.286]    [Pg.289]    [Pg.224]    [Pg.74]    [Pg.76]    [Pg.88]    [Pg.89]    [Pg.136]    [Pg.15]    [Pg.519]    [Pg.87]    [Pg.92]    [Pg.124]    [Pg.253]    [Pg.138]    [Pg.37]    [Pg.244]    [Pg.432]    [Pg.134]    [Pg.776]    [Pg.777]   
See also in sourсe #XX -- [ Pg.118 , Pg.119 ]




SEARCH



© 2024 chempedia.info