Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron complexes, with benzene

Iron complexes with organic ligands are widely used as such reservoirs. For example, the stable 19-electron complex cyclopentadienyl benzene iron(I) is a clean electron reservoir that has a sufficiently negative oxidation potential and can be easily made, stored, and handled and can be weighed accurately (Alonso Astruc 2000). [Pg.44]

Using FeS04 (1.67 x 10 M) in conjunction with equimolar amounts of methyl-pyrazine-5-carboxylic acid N-oxide and trifluoroacetic acid, in a water-acetonitrile-benzene (5 5 1 v/v/v) biphasic system, with benzene-H202-FeS04 = 620 60 1, a benzene conversion of 8.6% is achieved (35 °C 4h). Hydrogen peroxide conversion is almost complete (95%) and selectivities to phenol are 97% (based on benzene) and 88% (based on H2O2) [13]. These values are definitely higher than those described in the literature for the classical Fenton system [14], whereas iron complexes with pyridine-2-carboxylic acid derivatives are reported to be completely ineffective in the oxidation of benzene under the well-knovm Gif reaction conditions [15]. [Pg.518]

As shown in eq. (15.26), the iron atom of iron carbonyl is able to form the complex with benzene double bonds and allene double bonds, or carbonyl double... [Pg.321]

The iron complex 16 in anhyd benzene was treated with an alkyl halide (excess) and anhyd NaHC03 (1 mol equiv) and the mixture was stirred at 20 "C for 20 h. For acylation, an acyl chloride (1 mol equiv) and anhyd NaHCO, were employed and the mixture was stirred at 20CC for 1-2 h. For decomplexation, the TV-substituted iron complex 17 and a 20-fold molar excess of freshly sublimed Me3NO in acetone were stirred for 20 h at 20 C and the reaction mixture was worked up by chromatography to give 18. [Pg.341]

In a related reaction, isocyanides can be converted to aromatic aldimines by treatment with an iron complex followed by irradiation in benzene solution RNC -I- CftHe PhCH=NR. ... [Pg.1253]

Scheme 21 Hydroxylation of benzene to phenol with nonheme iron complex 35 [142]... Scheme 21 Hydroxylation of benzene to phenol with nonheme iron complex 35 [142]...
In addition to nonheme iron complexes also heme systems are able to catalyze the oxidation of benzene. For example, porphyrin-like phthalocyanine structures were employed to benzene oxidation (see also alkane hydroxylation) [129], Mechanistic investigations of this t3 pe of reactions were carried out amongst others by Nam and coworkers resulting in similar conclusions like in the nonheme case [130], More recently, Sorokin reported a remarkable biological aromatic oxidation, which occurred via formation of benzene oxide and involves an NIH shift. Here, phenol is obtained with a TON of 11 at r.t. with 0.24 mol% of the catalyst. [Pg.101]

Cycloaddition of aUcynes catalysed by transition metals is one of the most efficient and valuable ways to prepare benzene and pyridine systems [12], Among the possible catalytic systems able to catalyse this reaction, cobalt and iron complexes containing NHCs as ligands have shown high catalytic activity in the intramolecular cyclotrimerisation of triynes 36 (Scheme 5.10) [13]. The reaction was catalysed with low loading of a combination of zinc powder and CoC or FeClj with two or three equivalents of IPr carbene, respectively. [Pg.137]

The known reactions involving transfer of a C5HSBR ligand are collected in Table VII. Alternative syntheses are available for the bis(borata-benzene)iron complexes 65 and 18 only (55). In the system 7/Ni(CO)4 the main product is Co(CO)2(C5H5BMe) (15), and 66 is obtained as a thermally unstable by-product (47). In solution, 66 adopts a folded, doubly CO-bridged structure with a dihedral angle of 121° for the Ni2(CO)2 moiety (47). [Pg.226]

Iron-acyl enolates, such as 2, prepared by x-deprotonation of the corresponding acyl complexes with lithium amides or alkyllithiums, are nearly always generated as fs-enolates which suffer stereoselective alkylation while existing as the crmt-conformer which places the carbon monoxide oxygen anti to the enolate oxygen (see Section 1.1.1.3.4.1.). These enolates react readily with strong electrophiles, such as primary iodoalkanes, primary alkyl sulfonates, 3-bromopropenes, (bromomethyl)benzenes and 3-bromopropynes, a-halo ethers and a-halo carbonyl compounds (Houben-Weyl, Volume 13/9 a, p 413) (see Table 6 for examples). [Pg.934]

Chiral rhenium complexes, such as 1 and 4, are isoelectronic to the a-alkoxy vinyl-iron complexes discussed above and they exhibit analogous chemistry in many respects. Like the iron complexes, they are prepared as the Z-isomer and are readily alkylated by primary iodoalkanes and (bromomethyl)benzene with efficient 1,3-asymmetric induction97. Subsequent, spontaneous loss of halomethane produces the elaborated rhenium-acyl complexes. Two examples of the stereocontrolled preparation of diastereomeric rhenium-acyl complexes via this methodology are illustrated. [Pg.966]

Co-oxidation of indene and thiophenol in benzene solution is a free-radical chain reaction involving a three-step propagation cycle. Autocatalysis is associated with decomposition of the primary hydroperoxide product, but the system exhibits extreme sensitivity to catalysis by impurities, particularly iron. The powerful catalytic activity of N,N -di-sec-butyl-p-phenylenediamine is attributed on ESR evidence to the production of radicals, probably >NO-, and replacement of the three-step propagation by a faster four-step cycle involving R-, RCV, >NO, and RS- radicals. Added iron complexes produce various effects depending on their composition. Some cause a fast initial reaction followed by a strong retardation, then re-acceleration and final decay as reactants are consumed. Kinetic schemes that demonstrate this behavior but are not entirely satisfactory in detail are discussed. [Pg.209]

Ferrocene, bis(cyclopentadienide)iron, was the first transition metal complex with aromatic ligands, and its discovery induced extensive research on complexes of different transition metals and different aromatic ligands. It is therefore not surprising that borinate ion complexes of this type are known. Some complexes with five-membered heterocycles were mentioned in Section 1.21.7. In this section borinate complexes are considered in greater detail because of their formal relationship to benzene. An extensive review on transition metal complexes with boron heterocycles has recently been published (80MI12100). [Pg.644]

A related >/4-norcaradiene tricarbonyliron complex is obtained upon reaction of tricy-clo[4.3.1.0l6]deca-2,4-diene with Fe3(CO)12 in boiling benzene (equation 143). However, the [4.3.1]propellane ring system is not retained in the analogous tricarbonylchromium complex. Instead, as suggested from solution NMR and solid state X-ray analyses, the complex assumes a homoaromatic structure, which is intermediate between a norcaradi-ene and a cycloheptatriene system (equation 144)193,194. It is noteworthy that the Cr(CO)3 group prefers the same conformation as the Fe(CO)3 group in the analogous norcaradiene iron complex. [Pg.552]

Treatment of the tris(dialkyldithiocarbamato)iron(III) complexes in benzene with a controlled amount of concentrated hydrohalic acid affords the black bis(ligand) complexes [FeX(S2CNR2)2] (X = Cl, Br or I).306 For X = Cl the complexes may also be prepared by irradiation of the tris-(ligand) complex in a halogenated solvent. This free radical reaction is believed to proceed via excited-state labilization of one ligand followed by attack of solvent.307 Analogous complexes of pseudohalide ions (X = NCO, NCS- or NCSe ) have been obtained from reaction of the parent tris complex with the appropriate Ag+ salt.380 Representative complexes of this class have been shown by X-ray diffraction methods to have square pyramidal structures (71) in which the sulfur atoms of the two bidentate ligands comprise the basal plane (Fe—S 2.228 2.30 A) with the halide ion in the apical position (Fe—Cl 2.26-2.28 A).309 310 In the cases examined the metal atom sits 0.6 A out of the mean S4 plane in the direction of the apical halide ion. [Pg.245]


See other pages where Iron complexes, with benzene is mentioned: [Pg.529]    [Pg.529]    [Pg.1308]    [Pg.100]    [Pg.465]    [Pg.691]    [Pg.38]    [Pg.521]    [Pg.898]    [Pg.474]    [Pg.525]    [Pg.964]    [Pg.493]    [Pg.642]    [Pg.393]    [Pg.600]    [Pg.625]    [Pg.636]    [Pg.665]    [Pg.617]    [Pg.1505]    [Pg.59]    [Pg.202]    [Pg.335]    [Pg.493]    [Pg.215]    [Pg.452]    [Pg.145]    [Pg.149]    [Pg.151]    [Pg.154]    [Pg.156]    [Pg.1195]    [Pg.1233]   
See also in sourсe #XX -- [ Pg.195 ]




SEARCH



Benzene complexes

Benzene iron

Benzene, complexes with

Iron benzen

Iron complexes, with

© 2024 chempedia.info