Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron complexes Raman laser temperature-jump

This report has been written in order to demonstrate the nature of spin-state transitions and to review the studies of dynamical properties of spin transition compounds, both in solution and in the solid state. Spin-state transitions are usually rapid and thus relaxation methods for the microsecond and nanosecond range have been applied. The first application of relaxation techniques to the spin equilibrium of an iron(II) complex involved Raman laser temperature-jump measurements in 1973 [28]. The more accurate ultrasonic relaxation method was first applied in 1978 [29]. These studies dealt exclusively with the spin-state dynamics in solution and were recently reviewed by Beattie [30]. A recent addition to the study of spin-state transitions both in solution and the... [Pg.58]

The Raman laser temperature-jump technique has been used in studies of a variety of spin-equilibrium processes. It was used in the first experiment to measure the relaxation time of an octahedral spin-equilibrium complex in solution (14). Its applications include investigations of cobalt(II), iron(II), iron(III), and nickel(II) equilibria. [Pg.18]

The dynamics of an octahedral spin equilibrium in solution was first reported in 1973 for an iron(II) complex with the Raman laser temperature-jump technique (14). A relaxation time of 32 10 nsec was observed. Subsequently, further studies have been reported with the use of this technique, with ultrasonic relaxation, and with photoperturbation. Selected results are presented in Table III. [Pg.22]

The spin-equilibrium dynamics of iron(III) complexes in solution have been examined with the techniques of Raman laser temperature-jump, ultrasonic relaxation, and photoperturbation. The complexes investigated, the relaxation times observed, and one of the derived rate constants are presented in Table IV. Many of the relaxation times are quite short, and some of the original temperature-jump results (45) were found to be inconsistent with more accurate ultrasonic experiments (20) and later photoperturbation experiments (102). It has not been possible to repeat some of these laser temperature-jump observations. Instead, the expected absorbance changes and isosbestic points were found to occur within the heating rise time of the laser pulse, consistent with the ultrasonic and photoperturbation experiments (20). Consequently, none of the original Raman laser temperature-jump results is included in Table IV. [Pg.26]

The most significant results obtained for complexes of iron(II) are collected in Table 3. The data derive from laser Raman temperature-jump measurements, ultrasonic relaxation, and the application of the photoperturbation technique. Where the results of two or three methods are available, a gratifying agreement is found. The rate constants span the narrow range between 4 x 10 and 2 X 10 s which shows that the spin-state interconversion process for iron(II) complexes is less rapid than for complexes of iron(III) and cobalt(II). [Pg.74]

The spin state lifetimes in solution of the complexes II and III have been measured directly with the laser Raman temperature-jump technique189). Changes in the absorbance at 560 nm (CT band maximum) following the T-jump perturbation indicate that the relaxation back to equilibrium occurs by a first-order process. The spin-state lifetimes are r(LS) = 2.5 10 6 s and r(HS) =1.3 10 7 s. The enthalpy change is AH < 5 kcal mol-1, in good agreement with that derived from x(T) data in Ref. 188. The dynamics of intersystem crossing processes in solution for these hexadentate complexes and other six-coordinate ds, d6, and d7 spin-equilibrium complexes of iron(III), iron(II), and cobalt(II) has been discussed by Sutin and Wilson et al.u°). [Pg.168]

T2(Oh) 1A1(Oh) spin equilibrium in iron(II) complexes based on the hy-drotris(l-pyrazolyl)borate ligand, was established for [Fe(HB(me-pz)3)2] (for abbreviations see Sect. 8.1) in the solid state 172>173 and for [Fe(HB(pz)3)2] in solution174 . Sutin et al.17S studied the dynamics of the spin interconversion in CH2C12/CH30H solutions with the laser Raman temperature-jump technique between 0 and 25 °C. The relaxation was observed to be first order with a lifetime of 32 10 ns, independent of temperature and concentration over the range studied. The ki and k j values for the process... [Pg.173]


See other pages where Iron complexes Raman laser temperature-jump is mentioned: [Pg.24]    [Pg.79]    [Pg.82]    [Pg.1228]    [Pg.4682]   


SEARCH



Laser temperature-jump

Raman lasers

Temperature complex

Temperature jump

Temperature jump Raman laser

Temperature jump complexes

© 2024 chempedia.info