Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron complexes protonation

Iron hydride complexes can be synthesized by many routes. Some typical methods are listed in Scheme 2. Protonation of an anionic iron complex or substitution of hydride for one electron donor ligands, such as halides, affords hydride complexes. NaBH4 and L1A1H4 are generally used as the hydride source for the latter transformation. Oxidative addition of H2 and E-H to a low valent and unsaturated iron complex gives a hydride complex. Furthermore, p-hydride abstraction from an alkyl iron complex affords a hydride complex with olefin coordination. The last two reactions are frequently involved in catalytic cycles. [Pg.29]

In the same year, Evans and coworkers reported the electrochemical reduction of protons to H2 catalyzed by the sulfur-bridged dinuclear iron complex 25 as a hydrogenase mimic in which acetic acid was used as a proton source [201]. The proposed mechanism for this reaction is shown in Scheme 60. The reduction of 25 readily affords 25 via a one electron reduction product 25. Protonation... [Pg.67]

Protons are in general indispensable for the dismutation of superoxide (Eq. (4)). Also in the case of its dismutation catalyzed by a metal center, two protons are needed for the dissociation of the product (H2O2) from the metal center (Scheme 9). Therefore, a complex which can accept two protons upon reduction and release them upon oxidation is an excellent candidate for SOD activity. The studies on proton-coupled electron transfer in Fe- and Mn-SODs 48), demonstrated that the active site of MnSOD consists of more than one proton acceptor (Scheme 10). Since the assignment of species involved in proton transfer is extremely difficult in the case of enzymatic systems, relevant investigations on adequate model complexes could be of vast importance. H2dapsox coordinates to Fe(II) in its neutral form, whereas in the case of Fe(III) it coordinates in the dapsox form. Thus, oxidation and reduction of its iron complex is a proton-coupled electron transfer process 46), which as an energetically favorable... [Pg.77]

In summary, there is still much to understand about the nitrite reduction reaction. The crystal structures have shown how nitrite can bind to the di heme iron and protons can be provided to one of its oxygen atoms from two histidine residues. However, as yet no rapid reaction study has detected the release of product nitric oxide rather than the formation of the inhibitory dead-end ferrous di heme-NO complex. It is also not clear why the rate of interheme electron transfer is so slow over 11 A when nitrite or nitric oxide is the ligand to the d heme. [Pg.181]

The total synthesis of carbazomycin D (263) was completed using the quinone imine cyclization route as described for the total synthesis of carbazomycin A (261) (see Scheme 5.86). Electrophilic substitution of the arylamine 780a by reaction with the complex salt 779 provided the iron complex 800. Using different grades of manganese dioxide, the oxidative cyclization of complex 800 was achieved in a two-step sequence to afford the tricarbonyliron complexes 801 (38%) and 802 (4%). By a subsequent proton-catalyzed isomerization, the 8-methoxy isomer 802 could be quantitatively transformed to the 6-methoxy isomer 801 due to the regio-directing effect of the 2-methoxy substituent of the intermediate cyclohexadienyl cation. Demetalation of complex 801 with trimethylamine N-oxide, followed by O-methylation of the intermediate 3-hydroxycarbazole derivative, provided carbazomycin D (263) (five steps and 23% overall yield based on 779) (611) (Scheme 5.91). [Pg.250]

The [4+1] annulation of 1-azadienes to pyrroles can also be achieved through their carbonyl iron complexes (Scheme 6). Novel complex (1,4-diphenyl-2-methyl-l-azabutadiene)tricarbonyliron (0) 24 was obtained in 40% yield from the corresponding azadiene 23 and Fe2(CO)9 then nucleophilic attack by methyl lithium and quenching with tert-butyl bromide, as the proton source, gave 2,5-dimethyl-l,3-diphenylpyrrole 26 in 70% yield, probably through the anionic intermediate complex 25 [88TL1425 90JCS(P1)761]. [Pg.6]

The compound cyclopentadienylcyclo-octatetraenecobalt is probably analogous to the compound cyclopentadienyl cyclopentadienecobalt (XXIV). The cyclo-octatetraene residue shows two proton resonance lines in the nmr spectrum (167) in contrast to that in the iron complex [Fe(CO)3(cyclo-octatetraene)] which shows only one proton resonance line (152, 180). [Pg.94]

However, spectroscopic evidence suggests that compound II is a ferry iron complex which could be derived from the preceding structure by addition of a proton and loss of water.226 227... [Pg.854]

Up to this time there has been no report of the experimental determination of the structure of the parent homotropenylium ion. The three simplest systems that have been studied are 18, 19 and the iron complex 20. Cations 18 and 19 each have an oxygen-containing electron-donor substituent and, as such, appear to have smaller induced ring currents than the parent ion. In fact 18 and 19 have almost identical chemical shift differences (A<5 = 3.10 ppm) between the two C(8) protons. In the case of 20, A<5 is very small and it was considered to be a non-cyclically delocalized model for the bicyclo[5.l.OJheptadienyl cation69. [Pg.421]

Isolation of 3-cyclopropenyl metal compounds by this method has been achieved so far for iron and rhenium metals only. Thus, the reaction of Na[CpFe(CO)J (NaFp) with cyclopropenylium salts at -70 °C, in THF, gave 3-Fp-cyclopropene complexes (equation 194)2 267. The X-ray crystal structure of the most stable iron complex 3-Fp-C3Ph3 exhibits a regular cyclopropene C—C single and double bond distances (151 and 129 pm), and a characteristic distance of 208 pm for the Fe—C (T-bond267. The H NMR (CS2) spectrum of the 3-Fp-C3Ph,H complex displays a singlet at S = 2.63 ppm, of the cyclopropen yl proton at the 3-position. ... [Pg.573]

The base used may be hydroxide, alkoxide, carbonate, alkyl lithium, or alumina (13, 20, 24, 41, 49). The reaction is the reverse of the vinylidene synthesis by protonation of the n-acetylide, and the two complexes form a simple acid-base system. For the iron complexes in Eq. (2), the pK has been measured at 7.78 (in 2 1 thf-H20) (24). [Pg.73]

A titanium complex derived from chiral /V-arencsulfonyl-2-amino-1 -indanol [20], a cationic chiral iron complex [21], and a chiral oxo(salen)manganese(V) complex [22] have been developed for the asymmetric Diels-Alder reaction of oc,P-unsaturated aldehydes with high asymmetric induction (Eq. 8A.11). In addition, a stable, chiral diaquo titanocene complex is utilized for the enantioselective Diels-Alder reaction of cyclopentadiene and a series of a.P Unsaturated aldehydes at low temperature, where catalysis occurs at the metal center rather than through activation of the dienophile by protonation. The high endo/exo selectivity is observed for a-substituted aldehydes, but the asymmetric induction is only moderate [23] (Eq. 8A. 12). [Pg.471]


See other pages where Iron complexes protonation is mentioned: [Pg.220]    [Pg.157]    [Pg.353]    [Pg.523]    [Pg.169]    [Pg.72]    [Pg.73]    [Pg.169]    [Pg.256]    [Pg.295]    [Pg.300]    [Pg.120]    [Pg.266]    [Pg.346]    [Pg.898]    [Pg.965]    [Pg.238]    [Pg.293]    [Pg.13]    [Pg.213]    [Pg.410]    [Pg.514]    [Pg.1070]    [Pg.185]    [Pg.138]    [Pg.1070]    [Pg.112]    [Pg.15]    [Pg.642]    [Pg.170]    [Pg.175]    [Pg.679]    [Pg.71]    [Pg.219]    [Pg.293]    [Pg.74]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Iron carbonyl complexes protonation

Iron complexes alkylation--protonation

Proton complexes

Protonated complex

Tricarbonyl iron complexes protonation

© 2024 chempedia.info