Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron complexes dimethyl sulfoxide

The use of palladium(II) sulfoxide complexes as catalyst precursors for polymerization has met with mixed results thus a report of a palla-dium(II) chloride-dimethyl sulfoxide system as a catalyst precursor for phenylacetylene polymerization suggests similar results to those obtained using tin chloride as catalyst precursor (421). However, addition of dimethyl sulfoxide to solutions of [NH fPdCh] decreases the activity as a catalyst precursor for the polymerization of butadiene (100). Dimethyl sulfoxide complexes of iron have also been mentioned as catalyst precursors for styrene polymerization (141). [Pg.160]

A values have been obtained for oxidation of benzenediols by [Fe(bipy)(CN)4], including the effect of pH, i.e., of protonation of the iron(III) complex, and the kinetics of [Fe(phen)(CN)4] oxidation of catechol and of 4-butylcatechol reported. Redox potentials of [Fe(bipy)2(CFQ7] and of [Fe(bipy)(CN)4] are available. The self-exchange rate constant for [Fe(phen)2(CN)2] has been estimated from kinetic data for electron transfer reactions involving, inter alios, catechol and hydroquinone as 2.8 2.5 x 10 dm moF s (in dimethyl sulfoxide). [Pg.456]

Killday etal. (1988) also provided evidence for internal autoreduction of ferric nitrosyl heme complexes, as previously proposed by Giddings (1977). Heating of chlorohemin( iron-III) dimethyl ester in dimethyl sulfoxide solution with imidazole and NO produced a product with an infrared spectra identical to that of nitrosyl iron(ll) protoporphyrin dimethyl ester prepared by dithionite reduction. Both spectra clearly showed the characteristic nitrosyl stretch at 1663 and 1665 cm. They thus proposed a mechanism for formation of cured meat pigment which includes internal autoreduction of NOMMb via globin imidazole residues. A second mole of nitrite is proposed to bind to the heat-denatured protein, possibly at a charged histidine residue generated in the previous autoreduction step. [Pg.266]

Phthalocyaninato(2-)] iron(II) is a dark blue, thermally stable solid that can be sublimed in vacuo at 300°. It is very soluble in pyridine, giving deep blue solutions of the bis(pyridine) adducts. It also forms an unstable purple hexaaniline adduct when dissolved in aniline. It is soluble in concentrated sulfuric add and dimethyl sulfoxide (slightly) but is insoluble in most other organic solvents. The iron(II) complex, unlike the corresponding iron(II) porphines, is relatively stable toward oxidation to the iron (III) state. The electronic spectrum shows the following absorption bands (1-chloronaphthalene solution) 595 (e = 16,000), 630 (e = 17,000), 658 (e = 63,000) (pyridine solution) 333 (e = 45,000), 415 (e = 15,000), 395 (e = 2000), 658 nm (e = 8000). [Pg.161]

The above discussion has concentrated upon the reagents used, but it is equally of value to comment on the substrate, particularly in reactions for which other oxidation methods have been reported to fail. A good example is the oxidation of the iron-carbonyl complex (31) to the ketone (32 equation 14). The use of dimethyl sulfoxide activated with sulfur trioxide-pyridine complex gave a 70% yield of the product, in contrast to the use of the Pfitzner-Moffatt procedure (dimethyl sulfoxide-DCC) or the chromium... [Pg.299]

The oxidation of OH by [Fe(CN)6] in solution has been examined. Application of an electrical potential drives the reaction electrochemically, rather than merely generating a local concentration of OH at the anode, as has been suggested previously, to produce both O and [Fe(CN)6] in the vicinity of the same electrode. With high [OH ] or [Fe(CN)6] /[Fe(CN)6] ratio, the reaction proceeds spontaneously with a second-order rate constant of 2.2 x 10 M s at 25 °C. Under anaerobic conditions, iron(III) porphyrin complexes in dimethyl sulfoxide solution are reduced to the iron(II) state by addition of hydroxide ion or alkoxide ions. Excess hydroxide ion serves to generate the hydroxoiron(II) complex. The oxidation of hydroxide and phenoxide ions in acetonitrile has been characterized electrochemically " in the presence of transition metal complexes [Mn(II)L] [M = Fe,Mn,Co,Ni L = (OPPh2)4,(bipy)3] and metalloporphyrins, M(por) [M = Mn(III), Fe(III), Co(II) por = 5,10,15,20-tetraphenylpor-phinato(2-), 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphinato(2-)]. Shifts to less positive potentials for OH and PhO are suggested to be due to the stabilization of the oxy radical products (OH and PhO ) via a covalent bond. Oxidation is facilitated by an ECE mechanism when OH is in excess. [Pg.71]

Many investigators have studied substitution at iron(II)-diimine complexes in binary aqueous mixed solvents and other investigators in aqueous salt solutions. Some years ago the results of addition of salts and a cosolvent were assessed, for [Fe(5N02phen)3] in water, t-butyl alcohol, acetone, dimethyl sulfoxide, and acetonitrile mixtures containing added potassium bromide or tetra-n-butylammonium bromide. " Now the effects of added chloride, thiocyanate, and perchlorate on dissociation and racemization rates of [Fe(phen)3] in water-methanol mixtures have been established. The main explanation is in terms of increasing formation of ion pairs as the methanol content of the medium increases, but it is somewhat spoiled by the (unnecessary) assumption of a mechanism involving interchange within the ion pairs. Kip values (molar scale) of 11,18, and 25 were estimated for perchlorate, chloride, and thiocyanate in 80% (volume) methanol at 298.2 K. These values may be compared with values of 20, 7, and 4 for association between [Fe(phen)3] and iodide, " [Fe(bipy)3] and iodide, " and [Fe(phen)3] and cyanide " " in aqueous solution (at 298.2,... [Pg.224]

The N2S4 macrocycle (50) forms a deep blue low-spin iron(II) complex, characterized by X-ray diffraction. One hopes that kinetic studies will follow. Kinetic studies of N4 macrocycle complexes [Fe(N4)LL ]" appear regularly, usually involving replacement of one or both of L, L. Reaction of phthalocyaninatoiron(II) with imidazole, in dimethyl sulfoxide solution, proceeds by consecutive first-order processes, the second some thousand times slower than the first. The N4 macrocycles (51) link this section with the previous section kinetics of reactions of [Fe(51)(MeCN)]2 with such ligands as 1-methylimidazole, pyridine, tributyl phosphite, tributyl phosphine, and carbon monoxide have been investigated. A series of complexes [Fe(51)L2], this time only for (51) with R = Me, has been studied with a... [Pg.163]


See other pages where Iron complexes dimethyl sulfoxide is mentioned: [Pg.428]    [Pg.502]    [Pg.535]    [Pg.42]    [Pg.266]    [Pg.375]    [Pg.19]    [Pg.194]    [Pg.3248]    [Pg.647]    [Pg.32]    [Pg.211]    [Pg.225]    [Pg.3247]    [Pg.827]    [Pg.321]    [Pg.258]    [Pg.136]    [Pg.92]    [Pg.205]    [Pg.86]   
See also in sourсe #XX -- [ Pg.2 , Pg.488 , Pg.490 ]




SEARCH



Iron complexes sulfoxides

Iron sulfoxide complexes

Sulfoxide complexes

Sulfoxides dimethyl

Sulfoxides dimethyl sulfoxide

© 2024 chempedia.info