Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron aqueous complexes

The pale blue tris(2,2 -bipyridine)iron(3+) ion [18661-69-3] [Fe(bipy)2], can be obtained by oxidation of [Fe(bipy)2]. It cannot be prepared directiy from iron(III) salts. Addition of 2,2 -bipyridine to aqueous iron(III) chloride solutions precipitates the doubly hydroxy-bridged species [(bipy)2Fe(. t-OH)2Fe(bipy)2]Cl4 [74930-87-3]. [Fe(bipy)2] has an absorption maximum at 610 nm, an absorptivity of 330 (Mem), and a formation constant of 10. In mildly acidic to alkaline aqueous solutions the ion is reduced to the iron(II) complex. [Fe(bipy)2] is frequentiy used in studies of electron-transfer mechanisms. The triperchlorate salt [15388-50-8] is isolated most commonly. [Pg.440]

Iron(II) complexes are often included in studies when complexes are prepared from a large number of different metal ions. 2-formylpyridine thiosemicarbazone, 5, forms brown [Fe(5)2A2] (A = Cl, Br) when prepared in ethanol and [Fe(5-H)2] from aqueous alcohol solution [156], All of these complexes are diamagnetic. The resonance Raman and infrared spectra of [Fe(5-H)2] were examined in detail [130] and coordination occurs via the pyridyl nitrogen, azomethine nitrogen and thiol sulfur. There is appreciable d-d sulfur-to-iron(II) Jt-bonding. Solution studies of iron(II) complexes of some 5-substituted-2-formylpyridine thiosemicarbazones have been reported [157], but no solids... [Pg.20]

The electroreduction of NO to NH2OH and NH3 in aqueous media is also catalyzed by Mnin-TMPyP complexes.334 In contrast to the behavior found with iron porphyrin complexes, the reaction proceeds through an ECE mechanism, in which reduction of Mn111 to Mn11 is followed by NO coordination and then by electroreduction of [Mnn(NO)(TMPyP)]. [Pg.491]

Siderophore binding sites for iron(III) are for the most part negatively charged and therefore, in aqueous solution there is a competition between H+ and Fe3+ binding. Consequently, the equilibrium expression for the formation of the iron-siderophore complex must take into account proton participation in the reaction. [Pg.186]

About twenty years ago we reported on the di-isothiocyanato iron(II) complex of the tetradentate ligand tpa (tris(2-pyridylmethyl)amine) [7] (6). It was shown that this complex exhibits the spin crossover phenomenon with a critical temperature Tm of about 170 K. Several different solvated phases of the same system have since been characterized by Chansou et al. [8]. The unsolvated phase which can be isolated from an aqueous solution has been investigated by nuclear forward scattering (NFS), nuclear inelastic scattering (NIS) [9], extended x-ray absorption fine structure (EXAFS) spectroscopy, conventional Mossbauer spectroscopy, and by measurements of the magnetic susceptibility (SQUID) [10-13]. The various measurements consistently show that the transition is complete and abrupt and it exhibits a hysteresis loop between 102 and 110 K. [Pg.170]

Laverman and coworkers have reported activation parameters for the aqueous solution reactions of NO with the iron(II) and iron(III) complexes of the water soluble porphyrins TPPS andTMPS (21). These studies involved systematic measurements to determine on and kQ as functions of temperature (298—318 K) and hydrostatic pressure (0.1—250 MPa) to determine values of AH, AS and AV for the on and off reactions of the ferri-heme models and for the on reactions of the ferro-heme models (Table II). Figure 2 illustrates hydrostatic pressure effects on kOTL and kQff for Fem(TPPS). [Pg.212]

Kinetics and activation parameters for NO reactions with a series of iron(II) aminocarboxylato complexes have been obtained (Table II) in aqueous solution (31). Rate constants for these reactions ranged from 105 to 108M-1s-1 for the series of iron(II) complexes studied. The reactions of NO with Fen(edta) (edta = ethylenediaminetetraacetate) and Fen(Hedtra) (Hedtra = hydroxyethylenediaminetriacetate) yielded activation volumes of +4.1 and +2.8 cm3 mol-1, respectively and were assigned to a dissociative interchange (Id) mechanism (31b). All of the iron(II) aminocarboxylato complexes studied followed a similar pattern with the exception of the Fen(nta) (Nta = nitriloacetic acid) complex which gave a AV value of —1.5 cm3 mol-1. The reaction of this complex with... [Pg.218]

Figure 6. CIR-FTIR spectra of SAL and iron SAL complex in solution and SAL on goethite. (upper) 0.1 M SAL in 1 M KC1 at pH 5.5 (middle) SAL on goethite in D.O with goethite surface groups subtracted at pD 4.5, 0.01 M KC1 and 100 g/L solid concentration (lower) aqueous iron SAL complex at pH 1.6. Figure 6. CIR-FTIR spectra of SAL and iron SAL complex in solution and SAL on goethite. (upper) 0.1 M SAL in 1 M KC1 at pH 5.5 (middle) SAL on goethite in D.O with goethite surface groups subtracted at pD 4.5, 0.01 M KC1 and 100 g/L solid concentration (lower) aqueous iron SAL complex at pH 1.6.
Table 8.17 Main predominance limits of aqueous complexes and saturation limits between solutes and condensed phases in iron-bearing aqueous solutions (see figure 8.22). Standard state Gibbs free energies of formation of species are listed in table 8.18. (c) = crystalline ... [Pg.559]

Solubilities, in water, ethanol, and ethanol-water mixtures, have been reported for [Fe(phen)3]-(0104)2, [Fe(phen)3]2[Fe(CN)6], and [Fe(phen)3][Fe(phen)(CN)4]. Solubilities of salts of several iron(II) iiimine complexes have been measured in a range of binary aqueous solvent mixtures in order to estimate transfer chemical potentials and thus obtain quantitative data on solvation and an overall picture of how solvation is affected by the nature of the ligand and the nature of the mixed solvent medium. Table 8 acts as an index of reports of such data published since 1986 earlier data may be tracked through the references cited below Table 8, and through the review of the overall pattern for iron(II) and iron(III) complexes (cf. Figure 1 in Section 5.4.1.7 above) published recently. ... [Pg.445]

Activation volumes for aquation of Schiff base complexes [Fe(C5H4NCH=NHR)3] + (R = Me, Et, Pr , Bu ) in 0.1 M aqueous HCl are between - -11 cm mol and - -14cm mol v and thus within the range established earlier " for (substituted) tris-l,10-phenanthroline-iron(II) complexes. These positive values are consistent with dissociative activation, as are those for dissociation of [Fe(5Brphen)3] + and of [Fe(5N02phen)3] " " in the presence of edta. AF and values for aquation of [Fe(5Brphen)3] have the subject of isochoric analysis. " Medium effects on activation volumes have been reviewed for iron-diimine complexes in binary aqueous solvent mixtures. [Pg.445]

Fe(gmi)3] in glycol-water and a range of other binary aqueous solvent mixtures. These results, along with further results for AV for base hydrolysis of [Fe(phen)3] " and of [Fe(bipy)3] " in alcohol-water mixtures, have permitted the construction of a scheme combiniim solvent and ligand effects on AF for base hydrolysis of a range of diimine-iron(II) complexes. ... [Pg.449]

Iron(III) citrate, " " or iron(III) ammonium citrate, is the usual vehicle for administering supplementary iron to an iron-deficient patient, for inducing iron-overload in rats or other creatures prior to testing the efficacy of iron chelators, or for introducing the isotope Fe for metabolic tracer studies. Stability constants for the aqueous iron(III)-citrate system have been established. " The 2 1 complex is claimed to be the dominant species in iron(III)/citrate/DMF systems. " There has been a very qualitative study of the incorporation of iron into transferrin from iron citrate. " Iron(III) citrate reacts relatively slowly with the aluminum(III)-transferrin complex to give the thermodynamically strongly favored combination of iron(III)-transferrin with aluminum(lll) citrate. " The mechanism of iron uptake from citrate complexes in cells has been briefly discussed. An octa-iron citrate complex appears in Section 5.4.5.4.3 below. [Pg.491]

Job plots have established the stoichiometry of several iron(III)-3-hydroxy-2-methyl-4(l//)-pyridinone systems in aqueous solution.Stability constants have been determined for 1,2-dimethyl-, 1,2-diethyl-, and several other 3-hydroxy-4-pyridinonato-iron(III) complexes. " These data supplement and update the long-standing set of log / 3 values for... [Pg.503]

A multiple-path mechanism has been elaborated for dissociation of the mono- and binuclear tris(hydroxamato)-iron(III) complexes with dihydroxamate ligands in aqueous solution. " Iron removal by edta from mono-, bi-, and trinuclear complexes with model desferrioxamine-related siderophores containing one, two, or three tris-hydroxamate units generally follows first-order kinetics though biphasic kinetics were reported for iron removal from one of the binuclear complexes. The kinetic results were interpreted in terms of discrete intrastrand ferrioxamine-type structures for the di-iron and tri-iron complexes of (288). " Reactivities for dissociation, by dissociative activation mechanisms, of a selection of bidentate and hexadentate hydroxamates have been compared with those of oxinates and salicylates. ... [Pg.515]

Blesa, M.A. Maroto, A.J.G. (1986) Dissolution of metal oxides. J. chim. phys. 83 757—764 Blesa, M.A. Matijevic, E. (1989) Phase transformation of iron oxides, oxyhydroxides, and hydrous oxides in aqueous media. Adv. Colloid Interface Sci. 29 173-221 Blesa, M.A. Borghi, E.B. Maroto, A.J.G. Re-gazzoni, A.E. (1984) Adsorption of EDTA and iron-EDTA complexes on magnetite and the mechanism of dissolution of magnetite by EDTA. J. Colloid Interface Sci. 98 295-305 Blesa, M.A. Larotonda, R.M. Maroto, A.J.G. Regazzoni, A.E. (1982) Behaviour of cobalt(l 1) in aqueous suspensions of magnetite. Colloid Surf. 5 197-208... [Pg.561]

The micelle-encapsulated six coordinated bis(pyridinato) iron(II) complexes of protoporphyrin and OEP have been reported by addition of pyridine to the four coordinate ferrous complex in aqueous micellar solution. The optical spectrum of [Fe(II)(PP)(Py)2] in micelle (Fig. 10) is identical to S = 0 six-coordinate bis(pyridinato) iron(II) porphyrin complex [3]. The magnetic moment measurements in solution confirm their diamagnetic nature. The HNMR spectra are also characteristic low-spin iron(II) resonances (S = 0) with shifts lying in the diamagnetic region (Table 2). [Pg.138]


See other pages where Iron aqueous complexes is mentioned: [Pg.433]    [Pg.263]    [Pg.14]    [Pg.19]    [Pg.19]    [Pg.43]    [Pg.274]    [Pg.388]    [Pg.22]    [Pg.221]    [Pg.224]    [Pg.296]    [Pg.253]    [Pg.259]    [Pg.119]    [Pg.120]    [Pg.225]    [Pg.385]    [Pg.64]    [Pg.81]    [Pg.246]    [Pg.252]    [Pg.412]    [Pg.413]    [Pg.453]    [Pg.467]    [Pg.470]    [Pg.492]    [Pg.535]    [Pg.354]    [Pg.303]    [Pg.120]    [Pg.1070]    [Pg.8]   
See also in sourсe #XX -- [ Pg.65 ]




SEARCH



Aqueous complexants

Aqueous complexation

Aqueous complexes

© 2024 chempedia.info