Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iridium transfer hydrogenation

Iridium-catalyzed hydrogen transfer from aqueous phosphite esters or phosphorous acid is an effective way of producing axial alcohols (77,25,J4,46,57). [Pg.74]

The iridium complex 35 has been also used as catalyst for the transfer hydrogenation of substituted nitroarenes [34]. Good to very good conversions were observed (2.5 mol%, in refluxing isopropanol, 12 h). A mixture of two products was obtained, the relative ratio of which depends on the concentration of added base (KOH) and catalyst. (Scheme 2.5)... [Pg.31]

In the same study, these authors have prepared another series of amino-sulf(ox)ide ligands based on the (Nor)ephedrine and 2-aminodiphenylethanol skeletons, bearing two chiral centres in the carbon backbone.Their application to the iridium-catalysed hydrogen-transfer reduction of acetophenone generally gave better yields, but the enantioselectivity never exceeded 65% ee (Scheme 9.4). [Pg.271]

Iridium-catalyzed transfer hydrogenation of aldehyde 73 in the presence of 1,1-dimethylallene promotes tert-prenylation [64] to form the secondary neopentyl alcohol 74. In this process, isopropanol serves as the hydrogen donor, and the isolated iridium complex prepared from [Ir(cod)Cl]2, allyl acetate, m-nitrobenzoic acid, and (S)-SEGPHOS is used as catalyst. Complete levels of catalyst-directed diastereoselectivity are observed. Exposure of neopentyl alcohol 74 to acetic anhydride followed by ozonolysis provides p-acetoxy aldehyde 75. Reductive coupling of aldehyde 75 with allyl acetate under transfer hydrogenation conditions results in the formation of homoallylic alcohol 76. As the stereochemistry of this addition is irrelevant, an achiral iridium complex derived from [Ir(cod)Cl]2, allyl acetate, m-nitrobenzoic acid, and BIPHEP was employed as catalyst (Scheme 5.9). [Pg.120]

A wide variety of iridium-based hydrogenation catalysts are currently under development, notably for organic syntheses including enantioselective synthesis. Hydrogenation by hydrogen transfer is well known [15], and the reduction of C=0 and C=N double bonds is also possible [16, 17]. [Pg.39]

Transition-metal catalysts are, in general, more active than the MPVO catalysts in the reduction of ketones via hydrogen transfer. Especially, upon the introduction of a small amount of base into the reaction mixture, TOFs of transition-metal catalysts are typically five- to 10-fold higher than those of MPVO catalysts (see Table 20.7, MPVO catalysts entries 1-20, transition-metal catalysts entries 21-53). The transition-metal catalysts are less sensitive to moisture than MPVO catalysts. Transition metal-catalyzed reactions are frequently carried out in 2-propanol/water mixtures. Successful transition-metal catalysts for transfer hydrogenations are based not only on iridium, rhodium or ruthenium ions but also on nickel [93], rhenium [94] and osmium [95]. It has been reported that... [Pg.602]

Alcohols will serve as hydrogen donors for the reduction of ketones and imi-nium salts, but not imines. Isopropanol is frequently used, and during the process is oxidized into acetone. The reaction is reversible and the products are in equilibrium with the starting materials. To enhance formation of the product, isopropanol is used in large excess and conveniently becomes the solvent. Initially, the reaction is controlled kinetically and the selectivity is high. As the concentration of the product and acetone increase, the rate of the reverse reaction also increases, and the ratio of enantiomers comes under thermodynamic control, with the result that the optical purity of the product falls. The rhodium and iridium CATHy catalysts are more active than the ruthenium arenes not only in the forward transfer hydrogenation but also in the reverse dehydrogenation. As a consequence, the optical purity of the product can fall faster with the... [Pg.1224]

Brunner, Leitner and others have reported the enantioselective transfer hydrogenation of alpha-, beta-unsaturated alkenes of the acrylate type [50]. The catalysts are usually rhodium phosphine-based and the reductant is formic acid or salts. The rates of reduction of alkenes using rhodium and iridium diamine complexes is modest [87]. An example of this reaction is shown in Figure 35.8. Williams has shown the transfer hydrogenation of alkenes such as indene and styrene using IPA [88]. [Pg.1235]

Typically, heterogeneous transfer hydrogenations are carried out at higher temperatures. The Noyori-Ikariya ruthenium arene catalysts are stable up to temperatures around 80 °C, whilst the rhodium and iridium CATHy catalysts are... [Pg.1236]

Whereas most hydrogenation catalysts function very well in water (see for example Chapter 38 for two-phase aqueous catalysis), scattered instances are known of inhibition by water. Laue et al. attached Noyori s transfer hydrogenation catalyst to a soluble polymer and used this in a continuous device in which the catalyst was separated from the product by a membrane. The catalyst was found to be inhibited by the presence of traces of water in the feed stream, though this could be reversed by continuously feeding a small amount of potassium isopropoxide [60]. A case of water inhibition in iridium-catalyzed hydrogenation is described in Section 44.6.2. [Pg.1503]

There have been many reports of the use of iridium-catalyzed transfer hydrogenation of carbonyl compounds, and this section focuses on more recent examples where the control of enantioselectivity is not considered. In particular, recent interest has been in the use of iridium A -heterocyclic carbene complexes as active catalysts for transfer hydrogenation. However, alternative iridium complexes are effective catalysts [1, 2] and the air-stable complex 1 has been shown to be exceptionally active for the transfer hydrogenation of ketones [3]. For example, acetophenone 2 was converted into the corresponding alcohol 3 using only 0.001 mol% of this... [Pg.78]

Scheme 1 A highly active iridium catalyst for transfer hydrogenation... Scheme 1 A highly active iridium catalyst for transfer hydrogenation...
The same catalyst has also been used for the reduction of aldehydes to primary alcohols [7]. Several other iridium W-heterocyclic carbene complexes have been shown to be successful as catalysts for the transfer hydrogenation of ketones [8-12], including the interesting complex 6, where the cyclopentadienyl ring is tethered to the 77-heterocyclic carbene. Complex 6 was employed at low catalyst loading for the reduction of a range of ketones including the conversion of cyclohexanone 11 into cyclohexanol 12 [13]. [Pg.80]

The mechanism for the iridium-catalyzed hydrogen transfer reaction between alcohols and ketones has been investigated, and there are three main reaction pathways that have been proposed (Scheme 4). Pathway (a) involves a direct hydrogen transfer where hydride transfer takes place between the alkoxide and ketone, which is simultaneously coordinated to the iridium center. Computational studies have given support to this mechanism for some iridium catalysts [18]. [Pg.80]

The catalyst is also effective for the reduction of styrenes, ketones, and aldehydes. Cyclohexenone 16 was reduced to cyclohexanone 11 by transfer hydrogenation, and using a higher catalyst loading, styrene 17 was reduced to ethylbenzene 18. The elaboration of [Ir(cod)Cl]2 into the triazole-derived iridium carbene complex 19 provided a catalyst, which was used to reduce aUcene 20 by transfer hydrogenation [25]. [Pg.83]

The control of enantioselectivity in the reduction of carbonyl compounds provides an opportunity for obtaining the product alcohols in an enantiomerically enriched form. For transfer hydrogenation, such reactions have been dominated by the use of enantiomerically pure ruthenium complexes [33, 34], although Pfaltz and coworkers had shown by 1991 that high levels of enantioselectivity could be obtained using iridium(I) bis-oxazoline complexes [35]. [Pg.85]


See other pages where Iridium transfer hydrogenation is mentioned: [Pg.233]    [Pg.233]    [Pg.206]    [Pg.155]    [Pg.29]    [Pg.270]    [Pg.271]    [Pg.273]    [Pg.275]    [Pg.279]    [Pg.76]    [Pg.113]    [Pg.305]    [Pg.120]    [Pg.151]    [Pg.419]    [Pg.425]    [Pg.586]    [Pg.1216]    [Pg.1218]    [Pg.77]    [Pg.77]    [Pg.79]    [Pg.80]    [Pg.81]    [Pg.82]    [Pg.83]    [Pg.83]    [Pg.84]    [Pg.85]    [Pg.85]    [Pg.86]    [Pg.86]    [Pg.87]   
See also in sourсe #XX -- [ Pg.427 ]

See also in sourсe #XX -- [ Pg.366 ]

See also in sourсe #XX -- [ Pg.8 , Pg.366 ]

See also in sourсe #XX -- [ Pg.957 ]

See also in sourсe #XX -- [ Pg.8 , Pg.366 ]




SEARCH



Catalytic Activity of Cp Iridium Complexes in Hydrogen Transfer Reactions

Hydrogen transfer iridium catalysts

Iridium chloride transfer hydrogenation

Iridium chloride, transfer hydrogenation catalyst

Iridium hydrogen-transfer catalysis

Iridium hydrogenation

Iridium-catalyzed transfer hydrogenation

Iridium-catalyzed transfer hydrogenation reaction

© 2024 chempedia.info