Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iridium complexes alkyl

In addition, Peruzzini et al. developed, in 2007, iridium complexes of planar-chiral ferrocenyl phosphine-thioether ligands that were tested in the hydrogenation of simple alkyl aryl ketones.These complexes were diastereoselec-tively generated in high yields (85-90%) by addition of the corresponding... [Pg.265]

Alkylation of sp3 C-H bonds adjacent to a heteroatom such as nitrogen and oxygen is possible. The early works using tungsten or iridium complexes involved the reaction of dimethylamine with 1-pentene (Equation (29)) and the alkylation of a C-H bond adjacent to oxygen with / r/-butylethylene.34,34a,34b... [Pg.219]

The iridium complex composed of l/2[ Ir(OMe)(cod)2 ] and 4,4 -di-/ r/-butyl-2,2 -bipyridine (dtbpy) shows a high catalytic activity for aromatic G-H silylation of arenes by l,2-di-/z r/-butyl-l,l,2,2,-tetrafluorodisilane.142 The reaction of 1,2-dimethylbenzene with l,2-di-/< r/-butyl-l,l,2,2,-tetrafluorodisilane in the presence of l/2[ Ir(OMe)(cod)2 ] and dtbpy gives 4-silyl-l,2-dimethylbenzene in 99% yield (Equation (103)), which can be utilized for other functionalizations such as arylation and alkylation. [Pg.239]

Example Selective activation of C-H bonds is rarely observed in saturated alkyl groups, but the iridium complex 1 does react by C-H insertion of the metal into a ligand bond upon treatment with LiBr in solution. The reaction can be tracked by LT-FAB-MS (Fig. 9.17). A decreasing intensity of the molecular ion of 1, m/z 812.4, and increasing of 2, m/z 856.4, indicate the progress of this reaction. Furthermore, the halogen exchange is indicated by the isotopic pattern. [Pg.398]

The phosphoramidite ligands that are the focus of the remainder of this chapter have prompted the investigation of ligands containing related structures. Iridium complexes of aspartic acid-derived P-chirogenic diaminophosphine oxides (DlAPHOXs) catalyze the amination [62] and alkylation [63] of aUyhc carbonates (Scheme 6). With BSA as base and catalytic amounts of NaPFs as additive, branched amination and alkylation products were obtained from cinnamyl carbonates in excellent yields and enantioselectivities. However, the yields and enantios-electivities were lower for the reactions of alkyl-substituted aUyhc carbonates. Added LiOAc increased the enantioselectivities of aUyhc alkylation products. [Pg.180]

Although Helmchen et al. showed that asymmetric iridium-catalyzed allylic substitution could be achieved, the scope of the reactions catalyzed by iridium complexes of the PHOX ligands was limited. Thus, they evaluated reactions catalyzed by complexes generated from [lr(COD)Cl]2 and the dimethylamine-derived phosphoramidite monophos (Scheme 8) [45,51]. Although selectivity for the branched isomer from addition of malonate nucleophiles to allylic acetates was excellent, the highest enantiomeric excess obtained was 86%. This enantiomeric excess was obtained from a reaction of racemic branched allylic acetate. The enantiomeric excess was lower when linear allylic acetates were used. This system catalyzed addition of the hthium salts of A-benzyl sulfonamides to aUylic acetates, but the product of the reaction between this reagent and an alkyl-substituted linear aUylic acetate was formed with an enantiomeric excess of 13%. [Pg.181]

For further details of this reaction, the reader is referred to Chapter 9. The catalytic allylation with nucleophiles via the formation of Ti-allyl metal intermediates has produced synthetically useful compounds, with the palladium-catalyzed reactions being known as Tsuji-Trost reactions [31]. The reactivity of Ti-allyl-iridium complexes has been widely studied [32] for example, in 1997, Takeuchi idenhfied a [lrCl(cod)]2 catalyst which, when combined with P(OPh)3, promoted the allylic alkylation of allylic esters 74 with sodium diethyl malonate 75 to give branched... [Pg.260]

IrCl(cod)]2, in the presence of PPh3 and KOH, catalyzed the a-alkylation of ketones with alcohols [41]. As an example, the reaction of 2-octanone 87 with 1-butanol 88 was catalyzed by the iridium complex to give 6-dodecanone 89 in 80% yield (Equa-hon 10.19). The alkylation proceeded with complete regioselectivity at the less-hindered side of 2-octanone, and the reaction was promoted by a catalytic quantity of KOH (10mol%) in the absence of both a hydrogen acceptor and a solvent. [Pg.262]

The cationic iridium complex [Ir(cod)(PPh3)2]OTf, when activated by H2, catalyzes the aldol reaction of aldehydes 141 or acetal with silyl enol ethers 142 to afford 143 (Equation 10.37) [63]. The same Ir complex catalyzes the coupling of a, 5-enones with silyl enol ethers to give 1,5-dicarbonyl compounds [64]. Furthermore, the alkylation of propargylic esters 144 with silyl enol ethers 145 catalyzed by [Ir(cod)[P(OPh)3]2]OTf gives alkylated products 146 in high yields (Equation 10.38) [65]. An iridium-catalyzed enantioselective reductive aldol reaction has also been reported [66]. [Pg.269]

As mentioned above, iridium complexes are also active in the formation of amines via the hydrosilylation/protodesUylation of imines. In the presence of 2 equiv. of HSiEts, the cationic complex [lr bis(pyrazol-l-yl)methane (CO)2][BPh4] (C4) catalyzes the reduction of various imines, including N-alkyl and N-aryl imines and both aldimines and ketimmes. Excellent conversions directly to the amine products were achieved rapidly at room temperature in a methanol solution (Scheme 14.7) [53]. [Pg.355]

The isomerization of the (Z)-isomer into the ( )-isomer promoted by the iridium complex explains the lack of stereospecificity of the transformation. O-Alkylated oximes and ketoximes do not react and this fact suggests that the presence of both hydrogen and a hydroxyl group is required for the success of the transformation. The authors proposed that the initial displacement of a chloride ion of the iridium complex by the oxime allows the iridium to remove both the oxygen and the hydride from the initial oxime. Swapping places of both substituents produces the amide. [Pg.404]

An X-ray crystal structure of 55, redrawn as Fig. 10, supported the formulation of the complex as that of a peroxo system. Further, the structure demonstrated that no interactions between the [Of-] ligand and the borate moiety were possible because of the relative arrangement of the [Of-] and borate ligands about the iridium center. Such interactions were implicated in the oxygen-initiated decomposition of the iridium complex of 52, while the lack of reactivity of the iridium complexes of 53 and 54 was attributed to steric factors arising from the alkyl chains connecting the sulfur atoms. [Pg.306]

The activation of methane in solution by an organometallic complex presents some experimental difficulties because any solvent that is likely to be chosen will be more reactive than methane. In addition, insolubility of the complex in liquid methane may preclude reaction with the pure hydrocarbon. These problems were overcome in the case of the reaction of CH4 with the iridium complex of Eq. 15.106 by taking advantage of the fact that the desired hydndo methyl complex Is thermodynamically more stable than other hydrido alkyl complexes. The methyl complex was produced by first creating a hydrido cyclohexyl complex and then allowing it to react with methane, m... [Pg.883]

Oxidative Addition of Alkyl Halides to Palladium(0). The stereochemistry of the oxidative addition (31) of alkyl halides to the transition metals of group VIII can provide information as to which of the many possible mechanisms are operative. The addition of alkyl halides to d8-iridium complexes has been reported to proceed with retention (32), inversion (33), and racemization (34, 35) via a free radical mechanism at the asymmetric carbon center. The kinetics of this reaction are consistent with nucleophilic displacement by iridium on carbon (36). Oxi-... [Pg.106]

An exception is found with alkyl iridium porphyrins and re-acceptor ligands. In the n-propyl iridium complex, Ir(C3H7)(OEP)L with L = PPh3 (entry 41) and DMSO, type C is found. The sulfoxide is S-bound in the DMSO complex. [Pg.20]

The most conspicuous property of aliphatic amines, apart from their fishy smell, is their high basicity, which usually precludes N-alkylations under acidic reaction conditions (last reaction, Scheme 6.3). Hence, alkylation of amines with tertiary alkyl groups is not usually possible without the use of highly stabilized carbocations which can be formed under basic reaction conditions. Rare exceptions are N-alkyla-tions of amines via radicals (Scheme 4.2), copper-catalyzed propargylations (Scheme 6.3), and the addition of amines to some Michael acceptors and allyl palladium or iridium complexes. Better strategies for the preparation of tert-alkylamines include the addition of Grignard reagents to ketone-derived imines [13] or the reduction of tert-alkyl nitro compounds. [Pg.231]

Scheme 6.3. Alkylation of amines with allyl iridium complexes and with carbocations [14-16],... Scheme 6.3. Alkylation of amines with allyl iridium complexes and with carbocations [14-16],...

See other pages where Iridium complexes alkyl is mentioned: [Pg.118]    [Pg.230]    [Pg.29]    [Pg.29]    [Pg.256]    [Pg.184]    [Pg.105]    [Pg.305]    [Pg.659]    [Pg.13]    [Pg.435]    [Pg.159]    [Pg.77]    [Pg.78]    [Pg.96]    [Pg.100]    [Pg.154]    [Pg.178]    [Pg.178]    [Pg.202]    [Pg.307]    [Pg.112]    [Pg.297]    [Pg.145]    [Pg.195]    [Pg.203]    [Pg.184]    [Pg.151]    [Pg.91]    [Pg.171]   
See also in sourсe #XX -- [ Pg.230 , Pg.231 ]




SEARCH



Alkyl complexes

Alkyl complexes iridium porphyrins

Alkylation complex

Alkylations complexes

Iridium alkyl

Iridium alkyl and aryl complexes

Iridium complexes alkyls and aryls

Iridium, alkyl halide complex

Methyllithium, alkylation of iridium complexes

© 2024 chempedia.info