Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

IP3

In addition to the mechanism involving cycHc AMP, nonsugar sweeteners, eg, saccharin and a guanidine-type sweetener, have been found to enhance the production of another second messenger, inositol 1,4,5-trisphosphate (IP3), causing the closure of potassium channels and the release of... [Pg.284]

Another mechanism in initiating the contraction is agonist-induced contraction. It results from the hydrolysis of membrane phosphatidylinositol and the formation of inositol triphosphate (IP3)- IP3 in turn triggers the release of intracellular calcium from the sarcoplasmic reticulum and the influx of more extracellular calcium. The third mechanism in triggering the smooth muscle contraction is the increase of calcium influx through the receptor-operated channels. The increased cytosolic calcium enhances the binding to the protein, calmodulin [73298-54-1]. [Pg.141]

Excitation of smooth muscle via alpha-1 receptors (eg, in the utems, vascular smooth muscle) is accompanied by an increase in intraceUular-free calcium, possibly by stimulation of phosphoUpase C which accelerates the breakdown of polyphosphoinositides to form the second messengers inositol triphosphate (IP3) and diacylglycerol (DAG). IP3 releases intracellular calcium, and DAG, by activation of protein kinase C, may also contribute to signal transduction. In addition, it is also thought that alpha-1 adrenergic receptors may be coupled to another second messenger, a pertussis toxin-sensitive G-protein that mediates the translocation of extracellular calcium. [Pg.359]

Opening segments of the IP2 PRA data analysis section describe the definitions of terms and concepts employed, the assumptions made, and limitations recognized during the data base construction. A set of 39 plant-specific component failure mode summaries established the basis for component service hour determinations, the number of failures, and the test data source for each failure mode given for each component. Generic data from WASH-1400, IEEE Std 500, and the LER data summaries on valves, pumps, and diesels were combined with plant-specific failure data to produce "updated" failure information. All the IP2 specialized component hardware failure data, both generic and updated, are contained in Table 1.5.1-4 (IP3 1.6.1-4). This table contains (by system, component, and failure mode) plant-specific data on the number of failures and service hours or demands. For some components, it was determined that specifications of the system was warranted because of its impact on the data values. [Pg.119]

FIGURE 2.7 Production of second messengers inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG) through activation of the enzyme phospholipase C. This enzyme is activated by the a- subunit of Gq-protein and also by Py subunits of Gj-protein. IP3 stimulates the release of Ca2+ from intracellular stores while DAG is a potent activator of protein kinase C. [Pg.25]

A regenerative process whereby an intracellular Ca2+ channel (IP3 receptor or Ryanodine receptor) is itself stimulated by Ca2+, allowing thereby Ca2+ to promote its own release from intracellular stores. [Pg.300]

IP3 Receptor Ryanodine Receptor Non-selective Cations Channels TRP Channels... [Pg.306]

Local and transient Ca2+ increases that propagate throughout the cytosol of individual cells in the form of waves. Ca2+ waves are generated by a positive feedback activation of Ca2+ release from the intracellular Ca2+ stores through ryanodine receptors or inositol IP3 receptors. [Pg.306]

Inositol 1,4,5-trisphosphate (IP3) receptors are intracellular cation channels. They are expressed in most cells and predominantly within the membranes of the endoplasmic reticulum. They mediate release of Ca2+ from intracellular stores by the many receptors that stimulate IP3 formation. [Pg.661]

IP3 Receptors. Figure 1 Interplay between Ca2+ channels. Ca2+ signals are initiated when an extracellular stimulus (red) directly opens a Ca2+ channel in the plasma membrane or indirectly, via a signalling pathway (green), opens an intracellular Ca2+ channel. Ca2+ signals may then be propagated across the cell by Ca2+-induced Ca2+ release mediated by IP3R or RyR. [Pg.662]

IP3 Receptors. Figure 2 Key structural features of IP3 receptors. The key domains are shown in the central block. The upper structures show the suppressor domain (PDB accession code, 1XZZ) and the IBC (1N4K) with its (red) and p (blue) domains. A proposed structure for the pore region is shown below, with the selectivity filter shown in red only two of the four subunits are shown. The lowest panel shows reconstructed 3D structures of IP3R1 viewed (left to right) from ER lumen, the cytosol and in cross-section across the ER membrane (reproduced with permission from [4]). [Pg.663]

Taylor CW, Laude AJ (2002) IP3 receptors and their regulation by calmodulin and cytosolic Ca2+. Cell Calcium 32 321-334... [Pg.664]

IP3 receptor associated cGMP kinase substrate of 130 kDa that is present in all smooth muscles and platelets. It s phosphorylation decreases calcium release from intracellular EP3-sensitive stores. [Pg.665]

Activation of Mi, M3, and M5 mAChRs does not only lead to the generation of IP3 followed by the mobilization of intracellular Ca2+, but also results in the stimulation of phospholipase A2, phospholipase D, and various tyrosine kinases. Similarly, M2 and M4 receptor activation does not only mediate the inhibition of adenylyl cyclase, but also induces other biochemical responses including augmentation of phospholipase A2 activity. Moreover, the stimulation of different mAChR subtypes is also linked to the activation of different classes of mitogen-activated protein kinases (MAP kinases), resulting in specific effects on gene expression and cell growth or differentiation. [Pg.797]


See other pages where IP3 is mentioned: [Pg.564]    [Pg.320]    [Pg.278]    [Pg.279]    [Pg.359]    [Pg.24]    [Pg.169]    [Pg.297]    [Pg.302]    [Pg.305]    [Pg.396]    [Pg.473]    [Pg.568]    [Pg.589]    [Pg.661]    [Pg.662]    [Pg.662]    [Pg.662]    [Pg.662]    [Pg.663]    [Pg.664]    [Pg.664]    [Pg.664]    [Pg.664]    [Pg.664]    [Pg.664]    [Pg.675]    [Pg.792]    [Pg.797]    [Pg.815]    [Pg.817]    [Pg.907]    [Pg.909]    [Pg.909]    [Pg.968]    [Pg.969]    [Pg.1002]   
See also in sourсe #XX -- [ Pg.394 , Pg.395 ]

See also in sourсe #XX -- [ Pg.394 , Pg.395 ]

See also in sourсe #XX -- [ Pg.394 , Pg.395 ]

See also in sourсe #XX -- [ Pg.186 , Pg.198 ]




SEARCH



IP3 receptor

IP3 receptors Ca2+ channel

IP3-gated Ca2+channels

IP3-induced release

© 2024 chempedia.info