Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionophore estimating

Coccidiosis is a proto2oal disease of the intestinal tract of animals that leads to severe loss of productivity and death. The development and widespread use of anticoccidials has revolutionized the poultry industry. The estimated world market for anticoccidial agents in 1989 was 425 million and this was dominated by the polyether ionophore antibiotics monensin, salinomycin [53003-10-4], n imsm [55134-13-9], la.s9locid, and maduramicin [84878-61-5] (26). [Pg.476]

Anticoccidial Activity. The 1968 report that claimed monensin has activity against Eimeria sp., particularly E. tenella E. macdma., and E. acervulina greatly altered the prevention and control of coccidiosis in poultry (172). It is estimated that the polyether ionophores presently constitute more than 80% of the total worldwide usage of anticoccidials (173). Lasalocid and monensin have been approved for use in control of coccidiosis in cattle. [Pg.172]

Figure 5 also shows the effect of the ionophore concentration of the Langmuir type binding isotherm. The slope of the isotherm fora membrane with 10 mM of ionophore 1 was roughly three times larger than that with 30 mM of the same ionophore. The binding constant, K, which is inversely proportional to the slope [Eq. (3)], was estimated to be 4.2 and 11.5M for the membranes with 10 mM and 30 mM ionophore 1, respectively. This result supports the validity of the present Langmuir analysis because the binding constant, K, should reflect the availability of the surface sites, the number of which should be proportional to the ionophore concentration, if the ionophore is not surface active itself In addition, the intercept of the isotherm for a membrane with 10 mM of ionophore 1 was nearly equal to that of a membrane with 30 mM ionophore 1 (see Fig. 5). This suggests the formation of a closest-packed surface molecular layer of the SHG active Li -ionophore 1 cation complex, whose surface concentration is nearly equal at both ionophore concentrations. On the other hand, a totally different intercept and very small slope of the isotherm was obtained for a membrane containing only 3 mM of ionophore 1. This indicates an incomplete formation of the closest-packed surface layer of the cation complexes due to a lack of free ionophores at the membrane surface, leading to a kinetic limitation. In this case, the potentiometric response of the membrane toward Li+ was also found to be very weak vide infra). Figure 5 also shows the effect of the ionophore concentration of the Langmuir type binding isotherm. The slope of the isotherm fora membrane with 10 mM of ionophore 1 was roughly three times larger than that with 30 mM of the same ionophore. The binding constant, K, which is inversely proportional to the slope [Eq. (3)], was estimated to be 4.2 and 11.5M for the membranes with 10 mM and 30 mM ionophore 1, respectively. This result supports the validity of the present Langmuir analysis because the binding constant, K, should reflect the availability of the surface sites, the number of which should be proportional to the ionophore concentration, if the ionophore is not surface active itself In addition, the intercept of the isotherm for a membrane with 10 mM of ionophore 1 was nearly equal to that of a membrane with 30 mM ionophore 1 (see Fig. 5). This suggests the formation of a closest-packed surface molecular layer of the SHG active Li -ionophore 1 cation complex, whose surface concentration is nearly equal at both ionophore concentrations. On the other hand, a totally different intercept and very small slope of the isotherm was obtained for a membrane containing only 3 mM of ionophore 1. This indicates an incomplete formation of the closest-packed surface layer of the cation complexes due to a lack of free ionophores at the membrane surface, leading to a kinetic limitation. In this case, the potentiometric response of the membrane toward Li+ was also found to be very weak vide infra).
If the photoequilibrium concentrations of the cis and trans isomers of the photoswitchable ionophore in the membrane bulk and their complexation stability constants for primary cations are known, the photoinduced change in the concentration of the complex cation in the membrane bulk can be estimated. If the same amount of change is assumed to occur for the concentration of the complex cation at the very surface of the membrane, the photoinduced change in the phase boundary potential may be correlated quantitatively to the amount of the primary cation permeated to or released from the membrane side of the interface under otherwise identical conditions. In such a manner, this type of photoswitchable ionophore may serve as a molecular probe to quantitatively correlate between the photoinduced changes in the phase boundary potential and the number of the primary cations permselectively extracted into the membrane side of the interface. Highly lipophilic derivatives of azobis(benzo-15-crown-5), 1 and 2, as well as reference compound 3 were used for this purpose (see Fig. 9 for the structures) [43]. Compared to azobenzene-modified crown ethers reported earlier [39 2], more distinct structural difference between the cis... [Pg.454]

Data are available for plasticizers and ionophores, and indicate the operational stability (the higher the log P value, the higher the lipophilicity). The minimal lipophilicity log P required for membrane components with a lifetime of 30 x 24 h upon exposure to aqueous solution is estimated to be around 10 whereas it has to be as high as 25 for direct measurement in blood, serum and plasma. [Pg.319]

M.M. Shultz, O.K. Stefanova, S.S. Mokrov, and K.N. Mikhelson, Potentiometric estimation of the stability constants of ion-ionophore complexes in ion-selective membranes by the sandwich membrane method theory, advantages, and limitations. Anal. Chem. 74, 510-517 (2002). [Pg.133]

Calcium-selective electrodes have long been in use for the estimation of calcium concentrations - early applications included their use in complexometric titrations, especially of calcium in the presence of magnesium (42). Subsequently they have found use in a variety of systems, particularly for determining stability constants. Examples include determinations for ligands such as chloride, nitrate, acetate, and malonate (mal) (43), several diazacrown ethers (44,45), and methyl aldofuranosides (46). Other applications have included the estimation of Ca2+ levels in blood plasma (47) and in human hair (where the results compared satisfactorily with those from neutron activation analysis) (48). Ion-selective electrodes based on carboxylic polyether ionophores are mentioned in Section IV.B below. Though calcium-selective electrodes are convenient they are not particularly sensitive, and have slow response times. [Pg.258]

Conversely, the fundamentals for the UDL he on the coextraction of counterions into the membrane therefore, the membrane is no longer permselective (Donnan failure) [9]. Ideally, when the ionophores are saturated by ions, the ion-ionophore complex functions as an ion-exchanger and the membrane shows an anion Nernstian response. The UDL can be estimated from the membrane composition, formation constant and coextraction coefficients obtained from the so-called sandwich membrane method [73]. [Pg.656]

The ionophores have been incorporated into the vesicle membranes and cation flux was assessed either by monitoring the fluorescence of pyranine dye encapsulated within vesicles for estimating the proton transport rate or by analyzing the line shape of Na nucleus by NMR spectroscopy to evaluate the flux rate of Na+ 106-110 Qf ionophores were expressed by percent activity relative... [Pg.188]

In a simple application of Eq. (11.141), Waldecketal. (1998a, 1998b) estimated nH with and without the ionophore A23187 (see Figure 11.10) from steady-state NMR data using the relation... [Pg.578]

Using Eq. (11.141), the extent of slippage Lp JLp can be estimated in the plasma membrane Ca2+-ATPase. This is done close to the static head without the ionophore (-), and close to the level flow with the ionophore (+). Using the equation for./p. the control ratio of the ATPase is obtained from... [Pg.578]

The ions which are most frequently employed to estimate mitochondrial membrane potential are Rb in the presence of valinomycin, and lipophilic phosphonium cations. The ionophore valinomycin creates a uniport pathway for K or Rb in a variety of membranes [25]. The use of Rb enables the concentration gradient to be determined iso topically after rapid separation of the mitochondria from the medium Rb is usually considered to behave ideally in the matrix (i.e., not to be bound). Indeed, other methods of membrane potential measurement are usually referred back to the K or Rb gradient in the presence of valinomycin for their calibration. However, a disadvantage is that the ionophore will also transport K, which means that when the ionophore is added the membrane potential will tend to shift towards the value given by any K-gradient which happens to be pre-existing across the membrane. [Pg.36]

The above estimates are important not only for the correct understanding of the background conductance mechanisms in lipid bilayers. They also underlie the physical interpretation of the induced conductivity of the BLM modified with various ionophores. [Pg.416]


See other pages where Ionophore estimating is mentioned: [Pg.476]    [Pg.47]    [Pg.211]    [Pg.358]    [Pg.108]    [Pg.401]    [Pg.294]    [Pg.308]    [Pg.4]    [Pg.255]    [Pg.259]    [Pg.3]    [Pg.129]    [Pg.188]    [Pg.255]    [Pg.259]    [Pg.75]    [Pg.76]    [Pg.223]    [Pg.683]    [Pg.413]    [Pg.216]    [Pg.373]    [Pg.719]    [Pg.48]    [Pg.395]    [Pg.444]    [Pg.476]    [Pg.271]    [Pg.94]    [Pg.186]    [Pg.529]   
See also in sourсe #XX -- [ Pg.254 ]

See also in sourсe #XX -- [ Pg.254 ]




SEARCH



Ionophor

Ionophore

Ionophores

© 2024 chempedia.info