Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionizing radiolysis

Radical cations of the most popular spin traps PBN and DMPO have been generated by the methods of ionizing radiolysis and laser flash-photolysis in solid matrices (435-437). As a polar solvent with high solvating ability for... [Pg.201]

Irradiation of dilute aqueous solutions results in the interaction ofthe ionizing radiation with water molecules. The radiolysis of water produces hydrated electrons (eaq ", G = 2.8), hydrogen atoms (G = 0.6) and hydroxyl radicals (G = 2.8) which react with the molecules of the solutes. The use of special scavengers can convert one species to another, e.g. [Pg.898]

Application to Ethylene Radiolysis. The predominant ions in the mass spectrum of ethylene (1) are ethylene, vinyl, and acetylene ions, which together account for over 85% of the total ionization. A total of 38% of all ions are C2H4+, and since kF(ethylene) = 25.9 e.v./ion pair, the parent ion should be produced with a yield of at least 1.5 ions/100 e.v. absorbed in ethylene. Similar calculations for the probable yields of the other major ions lead to estimates of 0.96 vinyl ions/100 e.v. and 0.94 acetylene ions/100 e.v. Successive dissociations are relatively unimportant in ethylene. [Pg.257]

Enhancement of the total butene yield is observed when various additives whose ionization potential falls below about 9.4 e.v. are present during ethylene radiolysis (35). This is consistent with the above interpretation (Figure 2). In the vacuum ultraviolet photolysis of cyclobutane the yield of butenes varies with the ionization potential of the additives in the same way as observed here (12). The maximum enhancement corresponds closely to the yield of C4H8+, as expected from our mechanism. [Pg.259]

In the pulse radiolysis studies on the reaction of MV with TiOj, the sol contained propanol-2 or formate and methyl viologen, MV Ionizing radiation produces reducing organic radicals, i.e. (CH3)2COH or C02 , respectively, and these radicals react rapidly with MV to form MV. The reaction of MV with the colloidal particles was then followed by recording the 600 nm absorption of MV . The rate of reaction was found to be slower than predicted for a diffusion controlled reaction. [Pg.153]

It has been reported for many years that condensation nuclei can be produced by ionizing radiation. Recent studies have improved the measurement of the activity size distribution of these ultrafine particles produced by radon and its daughters (Reineking, et al., 1985 Knutson, et al., 1985). It seems that the Po-218 ion is formed by the radon decay, is neutralized within a few tens of milliseconds, and then attached to an ultrafine particle formed by the radiolysis generated by the polonium ion recoil. Although there will be radiolysis along the alpha track, those reactions will be very far away (several centimeters) from the polonium nucleus when it reaches thermal velocity. The recoil path radiolysis therefore seems to be the more likely source of the ultrafine particles near enough to the polonium atom to rapidly incorporate it. [Pg.368]

The molecular time scale may be taken to start at 10 14 s following energy absorption (see Sect. 2.2.3). At this time, H atoms begin to vibrate and most OH in water radiolysis is formed through the ion-molecule reaction H20+ + H20 H30+ + OH. Dissociation of excited and superexcited states, including delayed ionization, also should occur in this time scale. The subexcitation electron has not yet thermalized, but it should have established a quasi-stationary spectrum its mean energy is expected to be around a few tenths of an eV. [Pg.50]

At least seven modes of dissociation are theoretically possible below the ionization threshold, although their total yield in radiolysis is small (Platzman, 1967). The dissociation products are H, H2, O, and OH, where the first two are in their ground (electronic) states but the last two may be either in ground or excited states. Only two modes of dissociation, H20 -H + O and H20 H + OH, are possible for all excitation energies UV photolysis indicates that the latter process is by far (90%) the most likely. Accordingly, in radiolysis there is a tendency to lump the decay of all excited states of the water molecule into H and OH. [Pg.90]

Platzman (1967) has emphasized that most direct ionizations in molecules leave the positive ions in an excited state. Based on crude DOSD, he estimated that in water the average positive ion will have about 8 eV excitation energy. Later, the less approximate calculation of Pimblott and Mozumder (1991) reduced that figure to about 4 eV The chemical role of this excitation energy is unknown, although it may have some effect in the radiolysis of highly concentrated solutions. [Pg.114]

When averaged over the distribution of energy loss for a low-LET radiation (e.g., a 1-MeV electron), the most probable event in liquid water radiolysis generates one ionization, two ionizations, or one ionization and excitation, whereas in water vapor it would generate either one ionization or an excitation. In liquid water, the most probable outcomes for most probable spur energy (22 eV) are one ionization and either zero (6%) or one excitation (94%) for the mean energy loss (38 eV), the most probable outcomes are two ionizations and one excitation (78%), or one ionization and three excitations (19%). Thus, it is clear that a typical spur in water radiolysis contains only a few ionizations and/or excitations. [Pg.116]

That propane is indeed formed by H2 reaction is known by observing the distribution of yields of various isotopic compositions of propane from the radiolysis of an equimolar mixture of cyclopentane and deuterated cyclopentane. Further evidence is provided by the facts that (1) propane is not formed by photolysis below the ionization threshold, and (2) an electric field has no effect on the yield. [Pg.124]

In careful experiments by pulse radiolysis, the maximum G value of ozone production is 13.8, of which 6.2 comes from ionization and eventual neutralization, each such sequence giving two O atoms. If the remaining yield is attributed to the dissociation of excited states, either directly or indirectly, then the total yield of excitation will be about the same as that of ionization, 3.8 in this case, because each dissociation also gives two O atoms. [Pg.130]

However, much work has to be done before these intermediates are known well enough for us to understand, and control if possible, the stereo, regio- and chemo-selectivity of the bromination of any olefin. So far, most of the available data concern the two first ionization steps, but the final, product-forming, step is still inaccessible to the usual kinetic techniques. It would therefore be highly interesting to apply to bromination either the method of fast generation of reactive carbocations by pulse radiolysis (McClelland and Steenken, 1988) or the indirect method of competitive trapping (Jencks, 1980) to obtain data on the reactivity and on the life time of bromocation-bromide ion pairs that control this last step and, finally, the selectivities of the bromination products. [Pg.286]

Ionizing radiations (a, ft and y) react unselectively with all molecules and hence in the case of solutions they react mainly with the solvent. The changes induced in the solute due to radiolysis are consequences of the reactions of the solute with the intermediates formed by the radiolysis of the solvent. Radiolysis of water leads to formation of stable molecules H2 and H2O2, which mostly do not take part in further reactions, and to very reactive radicals the hydrated electron eaq, hydrogen atom H" and the hydroxyl radical OH" (equation 2). The first two radicals are reductants while the third one is an oxidant. However there are some reactions in which H atom reacts similarly to OH radical rather than to eaq, as e.g. abstraction of an hydrogen atom from alcohols, addition to a benzene ring or to an olefinic double bond, etc. [Pg.327]

Liquid carbon dioxide is decomposed efficiently by ionizing radiation79. The decreased radiation stability of the liquid phase compared to the gas phase has been attributed to the much smaller contribution of ion-molecule reactions to radiolysis in the condensed phase, where an efficient geminate charge neutralization process is likely to minimize the occurrence of such processes. Ion-molecule reactions are probably responsible for the rapid reoxidation observed in the gas phase. The yields of CO, 02 and 03 from the y-radiolysis of liquid C02 can be... [Pg.57]

Several studies have reported the influence of nitroimidazole derivatives on biological systems. Thus the influence of Misonidazole, l-(2-nitro-l-imidazoyl)-3-methoxy-propan-2-ol, on strand breaking in calf thymus DNA under ionizing radiation conditions has been assessed70. Pulse-radiolysis studies of nitroheterocyclic compounds have examined... [Pg.833]

Effusive beam technique, 157-158 Electron bombardment flow radiolysis, 238 Electrospray ionization and ionic clusters, 168 Enantiomers, separation techniques, 154-155 Enantioselectivity of enzymes, 148 Enthalpy-entropy compensation plots, 261 Enthalpy of activation, and quantum tunneling, 67, 70-71... [Pg.339]


See other pages where Ionizing radiolysis is mentioned: [Pg.178]    [Pg.178]    [Pg.193]    [Pg.267]    [Pg.1197]    [Pg.200]    [Pg.211]    [Pg.250]    [Pg.259]    [Pg.265]    [Pg.270]    [Pg.277]    [Pg.277]    [Pg.54]    [Pg.130]    [Pg.302]    [Pg.369]    [Pg.370]    [Pg.47]    [Pg.48]    [Pg.50]    [Pg.80]    [Pg.111]    [Pg.128]    [Pg.151]    [Pg.169]    [Pg.57]    [Pg.833]    [Pg.117]    [Pg.178]    [Pg.337]   
See also in sourсe #XX -- [ Pg.178 ]




SEARCH



Radiolysis. Dissociative Ionization Processes

© 2024 chempedia.info