Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionization cross section semiempirical calculation

Quantum mechanical and selected semiclassical and semiempirical methods for the calculation of electron impact ionization cross sections are described and their successes and limitations noted. Experimental methods for the measurement of absolute and relative ionization cross sections are also described in some detail. Four theoretical methods, one quantum mechanical and three semiclassical, have been used to calculate cross sections for the total ionization of the inert gases and small molecules and the results compared with experimental measurements reported in the literature. Two of the theoretical methods, one quantum mechanical and one semiclassical, have been applied to the calculation of orientation-dependent electron impact ionization cross sections and the results compared with recent experiments. [Pg.320]

Theoretical models of the electron impact ionization process have focused on the calculation of the ionization cross section and its energy dependence they are divided into quantum, semiclassical and semiempirical. Methods for the calculation of the ionization cross section and experimental techniques developed for the measurement of absolute ionization cross sections will be described in more detail below. Cross sections calculated using the semiempirical additivity method developed by Deutsch and Mark (DM) and their coworkers,12-14 the binary-encounter-Bethe (BEB) method of Kim and Rudd,15 16 and the electrostatic model (EM) developed by Vallance, Harland, and Maclagan17,18 are compared to each other and to experimental data. [Pg.321]

The EM method has been tested on the inert gases and a range of small molecules and gives good agreement with experimental results in almost all cases.17 This method will be discussed further in relation to the orientation dependence of the electron impact ionization cross section in a later section. The semiempirical polarizability method described below was developed to calculate and to use it with the amax values obtained from this method in order to calculate the energy dependence of the cross section. [Pg.327]

A multitude of semiempirical and semiclassical theories have been developed to calculate electron impact ionization cross sections of atoms and atomic ions, with relatively few for the more complicated case of molecular electron impact ionization cross sections. One of the earlier treatments of molecular targets was that of Jain and Khare.38 Two of the more successful recent approaches are the method proposed by Deutsch and Mark and coworkers12-14 and the binary-encounter Bethe method developed by Kim and Rudd.15,16 The observation of a strong correlation between the maximum in the ionization efficiency curve and the polarizability of the target resulted in the semiempirical polarizability model which depends only on the polarizability, ionization potential, and maximum electron impact ionization cross section of the target molecule.39,40 These and other methods will be considered in detail below. [Pg.328]

This formalism was originally devised for single ionization of ground-state atoms, but has now been successfully applied to the calculation of electron impact ionization cross sections for a range of molecules, radicals, clusters, and excited state atoms. Like many of the semiempirical and semiclassical methods used to describe the electron impact process, the theory has its roots in work carried out by J.J. Thomson, who used classical mechanics to derive an expression for the atomic electron impact ionization cross section,2... [Pg.329]

A quantitative evaluation of a measured energy dependence of the ratio has been made only for the system He(23S)-Ar for which V R) and T(fl) are known, so that the evaluation leads to a determination of parameters of V+(R). In classical model calculations,43 using a semiempirically determined potential V+(R)1] that only slightly deviates from the one determined from elastic scattering30 and r( ) = 4000 exp(-R/0.36) (au), which was determined by the requirements that the total ionization cross-section curve due to Pesnelle et al.43 be reproduced with the chosen K (R), for a Morse potential V+(R) the following parameter values were determined well depth 16 meV, equilibrium distance 5.67a0, and shape... [Pg.453]

III. Semiempirical Calculation of Total Single Ionization Cross Sections. 156... [Pg.147]

In the following sections of this article, we describe the principles of ionization cross-section measurements, including a brief description of the fast-beam apparatus and the high-resolution double-focusing mass spectrometer employed in the present studies. A comprehensive review of semiempirical calculations of total ionization cross sections is given. Comparisons between these calculated cross sections and the experimental results are presented. The decomposition of the various molecules in a low-temperature plasma is discussed on the basis of the measured ionization-cross-section data, and comparisons are made with the results of in situ plasma diagnostics studies using mass spectrometric techniques. [Pg.149]

Up until about 5 years ago, the calculation of absolute electron impact ionization cross sections for molecules relied largely on empirical and semiempirical methods and on simplistic additivity rules because of the complexity of more rigorous calculations for these processes and these targets (Younger and Mark, 1985). In the past 5 years, several new developments have emerged ... [Pg.156]

Conversely, for slow collisions the combined system of incoming electron and target molecule has to be considered, leading in the exit channel to a full three-body problem. Quantum-mechanical (approximate) calculations are difficult and have been carried out only for a few selected examples. Therefore, other methods have been developed with the goal of obtaining reasonably accurate cross sections using either classical or semiclassical theories and by devising semiempirical formulae. Some of these concepts are based on the Born-Bethe formula [22] and on the observation that the ejection of an atomic electron with quantum numbers (n,J) is approximately proportional to the mean-square radius of the electron shell (n,J). This leads also to proposed correlations of the ionization cross section with polarizability, dia-... [Pg.1020]

Due to the complexity of a full quantum mechanical treatment of electron impact ionization, or even a partial wave approximation, for all but relatively simple systems, a large number of semiempirical and semiclassical formulae have been developed. These often make basic assumptions which can limit their range of validity to fairly small classes of atomic or molecular systems. The more successful approaches apply to broad classes of systems and can be very useful for generating cross sections in the absence of good experimental results. The success of such calculations to reproduce experimentally determined cross sections can also give insight into the validity of the approximations and assumptions on which the methods are based. [Pg.327]


See other pages where Ionization cross section semiempirical calculation is mentioned: [Pg.322]    [Pg.30]    [Pg.318]    [Pg.145]    [Pg.33]    [Pg.33]    [Pg.44]    [Pg.296]    [Pg.298]    [Pg.34]   
See also in sourсe #XX -- [ Pg.156 , Pg.157 , Pg.158 , Pg.159 ]




SEARCH



Cross ionization

Cross section calculation

Ionization calculation

Ionization cross section

Semiempirical

Semiempirical calculations

© 2024 chempedia.info