Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic radii complexes

L is Avagadro s constant and k is defined above. It can be seen that there are indeed two corrections to the conductivity at infinite dilution tire first corresponds to the relaxation effect, and is correct in (A2.4.72) only under the assumption of a zero ionic radius. For a finite ionic radius, a, the first tenn needs to be modified Falkenliagen [8] originally showed that simply dividing by a temr (1 -t kiTq) gives a first-order correction, and more complex corrections have been reviewed by Pitts etal [14], who show that, to a second order, the relaxation temr in (A2.4.72) should be divided by (1 + KOfiH I + KUn, . The electrophoretic effect should also... [Pg.585]

The aluminium ion, charge -I- 3. ionic radius 0.045 nm, found in aluminium trifluoride, undergoes a similar reaction when a soluble aluminium salt is placed in water at room temperature. Initially the aluminium ion is surrounded by six water molecules and the complex ion has the predicted octahedral symmetry (see Table 2.5 ) ... [Pg.45]

The reason why lanthanides of high atomic number emerge first is that the stability of a lanthanide ion-citrate ion complex increases with the atomic number. Since these complexes are formed by ions, this must mean that the ion-ligand attraction also increases with atomic number, i.e. that the ionic radius decreases (inverse square law). It is a characteristic of the lanthanides that the ionic radius... [Pg.442]

Separation Processes. The product of ore digestion contains the rare earths in the same ratio as that in which they were originally present in the ore, with few exceptions, because of the similarity in chemical properties. The various processes for separating individual rare earth from naturally occurring rare-earth mixtures essentially utilize small differences in acidity resulting from the decrease in ionic radius from lanthanum to lutetium. The acidity differences influence the solubiUties of salts, the hydrolysis of cations, and the formation of complex species so as to allow separation by fractional crystallization, fractional precipitation, ion exchange, and solvent extraction. In addition, the existence of tetravalent and divalent species for cerium and europium, respectively, is useful because the chemical behavior of these ions is markedly different from that of the trivalent species. [Pg.543]

The most common oxidation state of niobium is +5, although many anhydrous compounds have been made with lower oxidation states, notably +4 and +3, and Nb can be reduced in aqueous solution to Nb by zinc. The aqueous chemistry primarily involves halo- and organic acid anionic complexes. Virtually no cationic chemistry exists because of the irreversible hydrolysis of the cation in dilute solutions. Metal—metal bonding is common. Extensive polymeric anions form. Niobium resembles tantalum and titanium in its chemistry, and separation from these elements is difficult. In the soHd state, niobium has the same atomic radius as tantalum and essentially the same ionic radius as well, ie, Nb Ta = 68 pm. This is the same size as Ti ... [Pg.20]

The PTCR effect is complex and not fully understood in terms of the grain boundary states and stmcture. Both the PTCR effect and room temperature resistivities are also highly dependent on dopant type and ionic radius. Figure 11 (32) illustrates this dependence where comparison of the PTCR behavior and resistivity are made for near optimum concentrations of La ", Nd ", and ions separately substituted into BaTiO. As seen, lowest dopant concentration and room temperature resistivity are obtained for the larger radius cation (La " ), but thePTCR effect was sharpest for the smallest radius cation (Y " ), reflecting dual site occupancy of the Y " ion. [Pg.361]

The surface behavior of Na is similar to that of Cs, except that inner sphere complexes are not observed. Although Na has the same charge as Cs, it has a smaller ionic radius and thus a larger hydration energy. Conseguently, Na retains its shell of hydration waters. For illite (Figure 6), outer sphere complexes resonate between -7.7 and -1.1 ppm and NaCl... [Pg.164]

Since hydrofluoride synthesis is based on thermal treatment at relatively high temperatures, the possibility of obtaining certain fluorotantalates can be predicted according to thermal stability of the compounds. In the case of compounds whose crystal structure is made up of an octahedral complex of ions, the most important parameter is the anion-cation ratio. Therefore, it is very important to take in to account the ionic radius of the second cation in relation to the ionic radius of tantalum. Large cations, are not included in the... [Pg.46]

The formulated principals correlating crystal structure features with the X Nb(Ta) ratio do not take into account the impact of the second cation. Nevertheless, substitution of a second cation in compounds of similar types can change the character of the bonds within complex ions. Specifically, the decrease in the ionic radius of the second (outer-sphere) cation leads not only to a decrease in its coordination number but also to a decrease in the ionic bond component of the complex [277]. [Pg.116]

The type of catalyst influences the rate and reaction mechanism. Reactions catalyzed with both monovalent and divalent metal hydroxides, KOH, NaOH, LiOH and Ba(OH)2, Ca(OH)2, and Mg(OH)2, showed that both valence and ionic radius of hydrated cations affect the formation rate and final concentrations of various reaction intermediates and products.61 For the same valence, a linear relationship was observed between the formaldehyde disappearance rate and ionic radius of hydrated cations where larger cation radii gave rise to higher rate constants. In addition, irrespective of the ionic radii, divalent cations lead to faster formaldehyde disappearance rates titan monovalent cations. For the proposed mechanism where an intermediate chelate participates in the reaction (Fig. 7.30), an increase in positive charge density in smaller cations was suggested to improve the stability of the chelate complex and, therefore, decrease the rate of the reaction. The radii and valence also affect the formation and disappearance of various hydrox-ymethylated phenolic compounds which dictate the composition of final products. [Pg.405]

Figure 8-16. Correlation of ionic radius and LFSE with log values for divalent transition-metal complexes of 1,2-diaminoethane. Figure 8-16. Correlation of ionic radius and LFSE with log values for divalent transition-metal complexes of 1,2-diaminoethane.
However, consideration in terms of the ionic radius or the LFSE shows that both factors predict that the maximum stabilities will be associated with nickel(ii) complexes, as opposed to the observed maxima at copper(ii). Can we give a satisfactory explanation for this The data presented above involve Ki values and if we consider the case of 1,2-diaminoethane, these refer to the process in Eq. (8.13). [Pg.163]

The data for the 1,2-diaminoethane complexes now parallels the trends in ionic radius and LFSE rather closely, except for the iron case, to which we return shortly. What is happening Copper(ii) ions possess a configuration, and you will recall that we expect such a configuration to exhibit a Jahn-Teller distortion - the six metal-ligand bonds in octahedral copper(ii) complexes are not all of equal strength. The typical pattern of Jahn-Teller distortions observed in copper(ii) complexes involves the formation of four short and two long metal-ligand bonds. [Pg.163]

Derived from the German word meaning devil s copper, nickel is found predominantly in two isotopic forms, Ni (68% natural abundance) and Ni (26%). Ni exists in four oxidation states, 0, I, II, III, and IV. Ni(II), which is the most common oxidation state, has an ionic radius of —65 pm in the four-coordinate state and —80 pm in the octahedral low-spin state. The Ni(II) aqua cation exhibits a pAa of 9.9. It forms tight complexes with histidine (log Af = 15.9) and, among the first-row transition metals, is second only to Cu(II) in its ability to complex with acidic amino acids (log K( = 6-7 (7). Although Ni(II) is most common, the paramagnetic Ni(I) and Ni(III) states are also attainable. Ni(I), a (P metal, can exist only in the S = state, whereas Ni(lll), a cT ion, can be either S = or S =. ... [Pg.284]

Metal ion Crystal ionic radius A Complexation constant... [Pg.70]

Eaq and Caq are the tendency of acid A and base B to undergo ionic and covalent bonding, respectively. Equation (2) resembles that proposed by Drago et al. (18) to model heats of complex formation of acids and bases in solvents of low dielectric constant. Only Lewis acids of ionic radius greater than 1.0 A obey Eq. (2). For all smaller Lewis acids, a third pair of parameters has to be introduced ... [Pg.99]

At the first step, the insertion of MMA to the lanthanide-alkyl bond gave the enolate complex. The Michael addition of MMA to the enolate complex via the 8-membered transition state results in stereoselective C-C bond formation, giving a new chelating enolate complex with two MMA units one of them is enolate and the other is coordinated to Sm via its carbonyl group. The successive insertion of MMA afforded a syndiotactic polymer. The activity of the polymerization increased with an increase in the ionic radius of the metal (Sm > Y > Yb > Lu). Furthermore, these complexes become precursors for the block co-polymerization of ethylene with polar monomers such as MMA and lactones [215, 217]. [Pg.35]

Most lanthanide compounds are sparingly soluble. Among those that are analytically important are the hydroxides, oxides, fluorides, oxalates, phosphates, complex cyanides, 8-hydroxyquinolates, and cup-ferrates. The solubility of the lanthanide hydroxides, their solubility products, and the pH at which they precipitate, are given in Table 2. As the atomic number increases (and ionic radius decreases), the lanthanide hydroxides become progressively less soluble and precipitate from more acidic solutions. The most common water-soluble salts are the lanthanide chlorides, nitrates, acetates, and sulfates. The solubilities of some of the chlorides and sulfates are also given in Table 2. [Pg.3]


See other pages where Ionic radii complexes is mentioned: [Pg.2306]    [Pg.671]    [Pg.214]    [Pg.329]    [Pg.671]    [Pg.948]    [Pg.1282]    [Pg.215]    [Pg.73]    [Pg.198]    [Pg.153]    [Pg.164]    [Pg.164]    [Pg.168]    [Pg.170]    [Pg.96]    [Pg.124]    [Pg.120]    [Pg.268]    [Pg.70]    [Pg.105]    [Pg.125]    [Pg.127]    [Pg.134]    [Pg.210]    [Pg.230]    [Pg.107]    [Pg.345]    [Pg.44]    [Pg.649]    [Pg.904]    [Pg.206]    [Pg.208]    [Pg.244]   
See also in sourсe #XX -- [ Pg.46 , Pg.47 ]




SEARCH



Alkali metal complexes ionic radii

Alkaline earth metal complexes ionic radii

Complexes ionic radii, group trends

Coordination complexes, ionic radii

Ionic complexes

Ionic radius

© 2024 chempedia.info