Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Radiation-initiated ionic polymerization

Yoshida, H. and Hayashi, K. Initiation Process of Radiation-induced Ionic Polymerization as Studied by Electron Spin Resonance. Vol. 6, pp. 401—420. [Pg.163]

Radiolytic ethylene destruction occurs with a yield of ca. 20 molecules consumed/100 e.v. (36, 48). Products containing up to six carbons account for ca. 60% of that amount, and can be ascribed to free radical reactions, molecular detachments, and low order ion-molecule reactions (32). This leaves only eight molecules/100 e.v. which may have formed ethylene polymer, corresponding to a chain length of only 2.1 molecules/ ion. Even if we assumed that ethylene destruction were entirely the result of ionic polymerization, only about five ethylene molecules would be involved per ion pair. The absence of ionic polymerization can also be demonstrated by the results of the gamma ray initiated polymerization of ethylene, whose kinetics can be completely explained on the basis of conventional free radical reactions and known rate constants for these processes (32). An increase above the expected rates occurs only at pressures in excess of ca. 20 atmospheres (10). The virtual absence of ionic polymerization can be regarded as one of the most surprising aspects of the radiation chemistry of ethylene. [Pg.266]

The radiolysis of olefinic monomers results in the formation of cations, anions, and free radicals as described above. It is then possible for these species to initiate chain polymerizations. Whether a polymerization is initiated by the radicals, cations, or anions depends on the monomer and reaction conditions. Most radiation polymerizations are radical polymerizations, especially at higher temperatures where ionic species are not stable and dissociate to yield radicals. Radiolytic initiation can also be achieved using initiators, like those used in thermally initiated and photoinitiated polymerizations, which undergo decomposition on irradiation. [Pg.225]

The kinetics of radiation-initiated polymerizations follow in a relatively straightforward manner those of photolytic polymerization. The initiation rate is determined by the radiation intensity and the concentration and susceptibility of the compound that radiolyzes to yield the initiating species (ionic and/or radical). The final expression for Rp is determined by the exact details of the initiation, propagation, and termination steps. [Pg.225]

Unlike ionic polymerizations, radical chain polymerizations have so far been found to occur only with unsaturated compounds. In some cases they can be induced purely thermally, or by means of light or high-energy radiation generally, however, radical initiators such as peroxo compounds, azo compounds, and redox systems are used. [Pg.164]

In 1957 Davison, Pinner, and Worrall (8) published data on the radiation polymerization of isobutene, which could best be explained as an ionic process. These initial findings were further confirmed by subsequent investigations (7, 9, 26, 27), Needless to say, these disclosures prompted reinvestigation of the question of radiation-induced ionic polymerizations in other systems. [Pg.181]

In the liquid phase there are many examples of ionic polymerizations of olefinic compounds induced by high energy radiation. In some, such as propylene,77 1-hexene,78 1-octene,18 and n-hexadecene-1,75 the initiating ionic species is believed to be the parent ion radical while in others such as isoprene,79 isobutylene,80 butadiene,81 and 2-methylstyrene,82 it is thought to be the carbonium ion. [Pg.214]

So far as vinyl monomers are concerned, ionic propagation proceeds with carbonium ions (cationic polymerization) or carbanions (anionic polymerization) at the chain ends. The study of the initiation process of radiation-induced ionic polymerization seeks to elucidate how these ions are formed from the primary ionic intermediates. Possible reactions... [Pg.402]

Initiation Process of Radiation-induced Ionic Polymerization as Studied byESR 403... [Pg.403]

The present review paper is concerned mainly with the ESR studies of irradiated organic glass matrices containing vinyl monomers made by the present authors to study the initiation process of radiation-induced ionic polymerization. In the following chapter, the study of the pure... [Pg.403]

According to the studies of monomers in the organic glass matrices mentioned so far, the ion radicals formed from solute monomers relate their radiation-induced ionic polymerization to the primary effect of ionizing radiations on matter. It is concievable that the initiating species in the anionic polymerization (caxbanions) are formed by the addition of the monomer molecules to the anion radicals which result from electron transfer from the matrices to the solute monomer. The formation of the cation radicals is necessary also to initiate the cationic polymerization. [Pg.417]

It seems to the present authors that the above-mentioned scheme of the initiation process in the glass matrices can be extended, at least, to the radiation-induced ionic polymerizations in liquid solutions at higher temperatures. This will be verified by rapid techniques of measurement, such as the pulse radiolysis method. [Pg.418]

The formation of ion radicals from monomers by charge transfer from the matrices is clearly evidenced by the observed spectra nitroethylene anion radicals in 2-methyltetrahydrofuran, n-butylvinylether cation radicals in 3-methylpentane and styrene anion radicals and cation radicals in 2-methyltetrahydrofuran and n-butylchloride, respectively. Such a nature of monomers agrees well with their behavior in radiation-induced ionic polymerization, anionic or cationic. These observations suggest that the ion radicals of monomers play an important role in the initiation process of radiation-induced ionic polymerization, being precursors of the propagating carbanion or carbonium ion. On the basis of the above electron spin resonance studies, the initiation process is discussed briefly. [Pg.418]

Usually, free-radical initiators such as azo compounds or peroxides are used to initiate the polymerization of acrylic monomers. Photochemical and radiation-initiated polymerizations are also well known. Methods of radical polymerization include bulk, solution, emulsion, suspension, graft copolymerization, radiation-induced, and ionic with emulsion being the most important. [Pg.18]

Ionic polymerization initiated by high-energy radiation might offer such an opportunity. The ejected electron might be sufficiently far from the positive center which initiates the polymerization. Its growth therefore would proceed in absence of a counter-ion. [Pg.278]


See other pages where Radiation-initiated ionic polymerization is mentioned: [Pg.157]    [Pg.225]    [Pg.381]    [Pg.67]    [Pg.13]    [Pg.181]    [Pg.402]   
See also in sourсe #XX -- [ Pg.442 ]




SEARCH



Initiator polymeric

Initiators ionic

Ionic polymerization

Ionic polymerizations polymerization

Radiation polymerization

Radiation-induced polymerization ionic chain initiation

Radiation-initiated

© 2024 chempedia.info