Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inverse electro-optic effect

Figure 9. Oscillations of phonon-polariton mode in lithium tantalate crystal excited through inverse electro-optic effect and impulsive stimulated polariton scattering. Time-dependent birefringence measured with probe pulse, which propagated parallel to but not collinear with excitation pulse. (Reprinted with permission from ref. 36.)... Figure 9. Oscillations of phonon-polariton mode in lithium tantalate crystal excited through inverse electro-optic effect and impulsive stimulated polariton scattering. Time-dependent birefringence measured with probe pulse, which propagated parallel to but not collinear with excitation pulse. (Reprinted with permission from ref. 36.)...
Borkovec et al. [59] also reported on a two-stage percolation process for the ME AOT (Aerosol OT, bis(2-ethylhexyl)sodium sulfosuccinate) system AOT-decane-water. The structural inversions were investigated using viscosity, conductivity, and electro-optical effect measurements. The viscosity results showed a characteristic profile with two maxima, which was interpreted as evidence for two symmetrical percolation processes an oil percolation on the water-rich side of the phase diagram and a water percolation process on the oil-rich side. [Pg.779]

Unlike ISS, the electro-optic effect (or its inverse) can occur only in noncentrosymmetric media and in general does not lead to any real material excitation. However, if there are low-frequency IR-active modes in the crystal, they may be excited impulsively [36, 59]. Such phonons couple strongly to IR radiation to form mixed modes called polaritons. Impulsive stimulated polariton scattering can be described approximately by coupled equations of motion for the polarization contributions P, and due to ionic motions (i.e., phonons) and electronic motions, respectively [9, 60] ... [Pg.20]

A good introduction to electro- and magneto-optical effects can be found in the book by Harvey on Coherent Light [158]. The main effects and the relationship between them are indicated in table 4.1. Many atoms are readily produced as vapour columns, using standard laboratory methods [159]. The natural mode in which to conduct experiments on unperturbed free atoms is therefore in transmission. As table 4.1 emphasises (the reason is given below), the Faraday effect contains equivalent information to the Zeeman effect in transmission. Actually, what Harvey calls the Zeeman effect in transmission is usually referred to as the inverse Zeeman effect [160], to distinguish it from the Zeeman effect observed in emission.5... [Pg.122]

Since the electro-optic tensor has the same symmetry as the tensor of the inverse piezoelectric effect, the linear electro-optic (Pockels) effect is confined to the symmetry groups in which piezoelectricity occurs (see Table 8.3). The electro-optic coefficients of most dielectric materials are small (of the order of 10 m V ), with the notable exception of ferroelectrics such as potassium dihydrogen phosphate (KDP KH2PO4), lithium niobate (liNbOs), lithium tantalate (LiTaOs), barium sodium niobate (Ba2NaNb50i5), or strontium barium niobate (Sro.75Bao.25Nb206) (Zheludev, 1990). For example, the tensorial matrix of KDP with symmetry group 42m has the form... [Pg.302]

The interest in quantum interference stems from the early 1970s when Agarwal [4] showed that the ordinary spontaneous decay of an excited degenerate V-type three-level atom can be modified due to interference between the two atomic transitions. The analysis of quantum interference has since been extended to other configurations of three- and multilevel atoms and many interesting effects have been predicted, which can be used to control optical properties of quantum systems, such as high-contrast resonances [5,6], electro-magnetically induced transparency [7], amplification without population inversion [8], and enhancement of the index of refraction without absorption [9]. [Pg.81]


See other pages where Inverse electro-optic effect is mentioned: [Pg.529]    [Pg.546]    [Pg.13]    [Pg.19]    [Pg.19]    [Pg.529]    [Pg.546]    [Pg.13]    [Pg.19]    [Pg.19]    [Pg.591]    [Pg.468]    [Pg.38]    [Pg.488]    [Pg.66]    [Pg.5648]    [Pg.254]    [Pg.145]    [Pg.170]    [Pg.244]    [Pg.913]    [Pg.316]    [Pg.357]    [Pg.549]    [Pg.5647]    [Pg.504]    [Pg.243]    [Pg.912]    [Pg.321]   
See also in sourсe #XX -- [ Pg.18 , Pg.19 ]




SEARCH



Electro-optic

Electro-optic effect

Electro-optical

Optical effects

Optical inversion

© 2024 chempedia.info