Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Introduction to nuclear structure and the principles of neutron activation analysis

1 Introduction to nuclear structure and the principles of neutron activation analysis [Pg.123]

In essence, NAA involves converting some atoms of the elements within a sample into artificial radioactive isotopes by irradiation with neutrons. The radioactive isotopes so formed then decay to form stable isotopes at a rate which depends on their half-life. Measurement of the decay allows the identification of the nature and concentration of the original elements in the sample. If analysis is to be quantitative, a series of standard specimens which resemble the composition of the archaeological artifact as closely as possible are required. NAA differs from other spectroscopic methods considered in earlier chapters because it involves reorganization of the nucleus, and subsequent changes between energy levels within the nucleus, rather than between the electronic energy levels. [Pg.123]

As explained in Chapter 10, the number of protons in the nucleus is called the atomic number (Z) and governs the chemical identity of the atom. The number of neutrons in the nucleus (N) plus the number of protons is given [Pg.123]

The number of protons is unique to the element but most elements can exist with two or more different numbers of neutrons in their nucleus, giving rise to different isotopes of the same element. Some isotopes are stable, but some (numerically the majority) have nuclei which change spontaneously - that is, they are radioactive. Following the discovery of naturally radioactive isotopes around 1900 (see Section 10.3) it was soon found that many elements could be artificially induced to become radioactive by irradiating with neutrons (activation analysis). This observation led to the development of a precise and sensitive method for chemical analysis. [Pg.124]

As a result of slow (thermal) neutron irradiation, a sample composed of stable atoms of a variety of elements will produce several radioactive isotopes of these activated elements. For a nuclear reaction to be useful analytically in the delayed NAA mode the element of interest must be capable of undergoing a nuclear reaction of some sort, the product of which must be radioactively unstable. The daughter nucleus must have a half-life of the order of days or months (so that it can be conveniently measured), and it should emit a particle which has a characteristic energy and is free from interference from other particles which may be produced by other elements within the sample. The induced radioactivity is complex as it comprises a summation of all the active species present. Individual species are identified by computer-aided de-convolution of the data. Parry (1991 42-9) and Glascock (1998) summarize the relevant decay schemes, and Alfassi (1990 3) and Glascock (1991 Table 3) list y ray energy spectra and percentage abundances for a number of isotopes useful in NAA. [Pg.126]




SEARCH



Active principle

Activity introduction

Activity nuclear

Analysis of structure

Analysis principle

Introduction and Principles

Introduction structural

Introduction to Analysis

Neutron activation

Neutron activation analysi

Neutron activation analysis

Neutron activation analysis principles

Neutron analysis

Nuclear Neutron Activation

Nuclear activation

Nuclear analysis

Nuclear structure

Principle of the analysis

Principles of Neutron Activation Analysis

Structural principles

Structure activity, and

Structure principles

The Neutron

© 2024 chempedia.info