Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intramolecular reactions stereogenic center formation

The reaction of vinyloxiranes with malonate proceeds regio- and stereose-lectively. The reaction has been utilized for the introduction of a 15-hydroxy group in a steroid related to oogoniol (265)(156]. The oxirane 264 is the J-form and the attack of Pd(0) takes place from the o-side by inversion. Then the nucleophile comes from the /i-side. Thus overall reaction is sT -StM2 type, in the intramolecular reaction, the stereochemical information is transmitted to the newly formed stereogenic center. Thus the formation of the six-membered ring lactone 267 from 266 proceeded with overall retention of the stereochemistry, and was employed to control the stereochemistry of C-15 in the prostaglandin 268[157]. The method has also been employed to create the butenolide... [Pg.325]

In 2007, Terada et al. extended their previously described chiral phosphoric acid-catalyzed aza-ene-type reaction of M-acyl aldimines with disubstituted enecarbamates (Scheme 28) to a tandem aza-ene-type reaction/cyclization cascade as a one-pot entry to enantioenriched piperidines 121 (Scheme 48). The sequential process was rendered possible by using monosubstituted 122 instead of a disubstituted enecarbamate 76 to produce a reactive aldimine intermediate 123, which is prone to undergo a further aza-ene-type reaction with a second enecarbamate equivalent. Subsequent intramolecular cychzation of intermediate 124 terminates the sequence. The optimal chiral BINOL phosphate (R)-3h (2-5 mol%, R = 4-Ph-C H ) provided the 2,4,6-sub-stituted M-Boc-protected piperidines 121 in good to exceUent yields (68 to > 99%) and accomplished the formation of three stereogenic centers with high diastereo- and exceUent enantiocontrol (7.3 1 to 19 1 transicis, 97 to > 99% ee(trans)) [72]. [Pg.433]

An alternative concept is asymmetric desymmetrization of a prochiral molecule of type 83. The starting materials 83 have three keto groups and one carbon atom bearing at least three substituents. A prerequisite is the presence of a prochiral carbon atom with two identical substituents bearing a keto functionality (Scheme 6.39, Eq. (2)). This type of asymmetric intramolecular aldol reaction proceeds with formation of cyclic ketols of type 84 with two stereogenic centers. Dehydration can subsequently be performed, leading to optically active enones of type 85. The two types of intramolecular aldol reaction are shown conceptually in Scheme 6.39. [Pg.166]

Desymmetrization via proline-catalyzed asymmetric intramolecular aldol reaction can, however, also be performed with acydic diketones of type 109 as has been reported by the Agami group [106], In the first step a prochiral acyclic diketone reacts in the presence of L-proline as catalyst (22-112 mol%) with formation of the aldol adduct 111 (Scheme 6.49). In this step reaction products with two stereogenic centers, 110, are formed. These chiral hydroxyketones 110 are subsequently converted, via dehydration, into the enones 111, by treatment with p-toluenesulfonic acid. [Pg.174]

Reaction of the (1 / ),(—)- or (KV),(+)-tricarbony l(2-su Instituted benzaldehyde)chromium complexes 181 with the dianion of /-butylmethanesulfonamide affords, after decomplexation and intramolecular cyclization, the enantiomeri-cally pure 3-(2-phenyl-substituted)/ -sultam derivatives 182. The reaction of the dianion on the pro-stereogenic formyl group is key to the diastereoselective formation of the new stereogenic center, and it is controlled by means of... [Pg.757]

The regioselectivity of intramolecular [2 + 2]-photocydoaddition reactions is predictable if five-membered ring formation is possible in the formation of biradicals of type C or C (rule of five, vide supra). If five-membered ring formation is not feasible, then six-membered rings are most readily formed. The facial diastereo-selectivity is efficiently controlled by a stereogenic center in the cyclopentenone if the intramolecular alkene is attached via a tether to this stereogenic center. The key step 16 —> 17 in the stereoselective synthesis of (—)-incarvilline (18) illustrates the point (Scheme 6.7) [28]. The side chain attached to C-4 in the cyclopentenone 16 carries the terminal alkene, which reacts intramolecularly with perfect regio- and diastereoselectivity to cyclobutane 17. [Pg.176]

Mizorokf and Heck reported independently in the early 1970s the first palladium-mediated coupling of an aryl or vinyl halide or triflate with an alkene. This reaction is generally referred to as the Heck reaction. From the first reports on asymmetric intramolecular Heck reactions by Overman and Shibasakf in 1989 the asymmetric Heck reaction has emerged as a reliable method for the stereoselective formation of tertiary and quaternary stereogenic centers by C-C bond formation in polyfunctionalized molecules. ... [Pg.3]

As illustrated in Scheme 10, the CAB catalyst also effectively catalyzes the intramolecular Diels-Alder reaction of trienal 8 to afford bicyclic product 9 in high diastereo- and enantioselectivity [58]. In a single step, this endo-selective reaction achieves the formation of a tetrahydroindane ring system containing a stereogenic quaternary center. [Pg.1125]

Scheme 8. Enantioselective Photoreactions in TADDOL Inclusion Compounds with a Cou-marin, a Methacryl Anilide, and an Oxocyclohexenyl-carboxamide. In the first case, the packing of the coumarin molecules in the mixed crystal is such that the double bonds are predisposed for the (2+2) cycloaddition. In the second example, a photochemical electrocychc reaction is followed by a sigmatropic H shift. The third reaction is an intramolecular (2+2) cycloaddition with dia- and enantioselective formation of three new stereogenic centers. There are several more reactions of this type, described in the literature [54], and the Toda group has determined the crystal structures of a number of inclusion compounds to show the correlation between the crystal packing and the configuration of the photoproducts. EMastereoselective solid-phase reactions of chiral guests in TADDOL-host lattices have also been described by the... Scheme 8. Enantioselective Photoreactions in TADDOL Inclusion Compounds with a Cou-marin, a Methacryl Anilide, and an Oxocyclohexenyl-carboxamide. In the first case, the packing of the coumarin molecules in the mixed crystal is such that the double bonds are predisposed for the (2+2) cycloaddition. In the second example, a photochemical electrocychc reaction is followed by a sigmatropic H shift. The third reaction is an intramolecular (2+2) cycloaddition with dia- and enantioselective formation of three new stereogenic centers. There are several more reactions of this type, described in the literature [54], and the Toda group has determined the crystal structures of a number of inclusion compounds to show the correlation between the crystal packing and the configuration of the photoproducts. EMastereoselective solid-phase reactions of chiral guests in TADDOL-host lattices have also been described by the...
Formation of a cyclic product intramolecular ene reaction with Lewis acid ZnBr2 formation of two new stereogenic centers... [Pg.274]


See other pages where Intramolecular reactions stereogenic center formation is mentioned: [Pg.287]    [Pg.392]    [Pg.534]    [Pg.569]    [Pg.634]    [Pg.641]    [Pg.139]    [Pg.312]    [Pg.71]    [Pg.236]    [Pg.598]    [Pg.228]    [Pg.517]    [Pg.223]    [Pg.153]    [Pg.69]    [Pg.271]    [Pg.121]    [Pg.90]    [Pg.312]    [Pg.241]    [Pg.468]    [Pg.4]    [Pg.572]    [Pg.99]    [Pg.93]    [Pg.468]    [Pg.64]    [Pg.439]    [Pg.1110]    [Pg.39]    [Pg.107]    [Pg.16]    [Pg.86]    [Pg.112]    [Pg.150]   
See also in sourсe #XX -- [ Pg.92 , Pg.93 , Pg.94 , Pg.95 , Pg.96 , Pg.97 , Pg.98 , Pg.99 , Pg.100 , Pg.101 , Pg.102 , Pg.103 , Pg.104 ]




SEARCH



Reaction center

Reaction stereogenic

Stereogenic center

© 2024 chempedia.info