Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Chiral optimization

Asymmetric induction during the reduction of 4-(48) was observed when a surface-modified carbon cathode was used.70 Optical yields were low but the effect of the chiral amino acid bound to the carbon surface was proved to be a true surface phenomenon. Induction of chirality by homogeneous rather than surface-bound agents has also been studied.71 All the isomeric acetylpyridines (48) were reduced in the presence of three different chiral alkaloids. Both carbinol products 2- and 4-(49) were shown to possess induced chirality, but the 3-carbinol (49) had none under any of the conditions tried. More rapid protonation of the intermediate was proposed to account for the lack of induced chirality. Optimization of optical yields was done.72 The pinacols (50) formed along with 49 were found to have no induced chirality. Optical yields have been as high as 50%.73 The role of electroabsorption was found to be important in the reduction of 2-(48).74 Product distributions were noted as a function of surfactant present in the electrolyte, carbinol 49 being favored... [Pg.185]

Carballeira JD, Krumlinde P et al (2007) Directed evolution and axial chirality optimization of the enantioselectivity of Pseudomonas aeruginosa lipase towards the kinetic resolution of a racemic allene. Chem Commun 43 1913-1915... [Pg.38]

B. S. Kersten, HPLC Chiral optimization of a unique beta-amino acid and its ester, J. Liq. Chromatogr. 17 (1994), 33-48. [Pg.835]

We have carried out a series of geometry optimizations on nanotubes with diameters less than 2 nm. We will present some results for a selected subset of the moderate band gap nanotubes, and then focus on results for an example chiral systems the chiral [9,2] nanotube with a diameter of 0.8 nm. This nanotube has been chosen because its diameter corresponds to those found in relatively large amounts by Iijima[7] after the synthesis of single-walled nanotubes. [Pg.43]

Chiral Catalyst Optimization 201 Tab. 5.8 Catalyst optimization using 20 in the reaction of Id with 7a... [Pg.201]

Thus, a novel chiral zirconium complex for asymmetric aza Diels-Alder reactions has been developed by efficient catalyst optimization using both solid-phase and liquid-phase approaches. High yields, high selectivity, and low loading of the catalyst have been achieved, and the effectiveness of chiral catalyst optimization using a combination of solid-phase and liquid-phase methods has been demonstrated. [Pg.203]

In total, 29 pbospborus-containing chiral ligands of various structures were screened under tlie optimized ji-selective condhions, but most of tlieni gave little or no chiral induction. Hie four ligands 38a-d, all derived from i-)-TADDOL, depicted in Fig. 8.4 gave tts in excess of 3096 in the reaction between etliyl magnesium bromide and cinnamyl cliloride. [Pg.278]

Method Development and Optimization of Enantiomeric Separations Using Macrocyclic Glycopeptide Chiral Stationary Phases... [Pg.24]

When analytes lack the selectivity in the new polar organic mode or reversed-phase mode, typical normal phase (hexane with ethanol or isopropanol) can also be tested. Normally, 20 % ethanol will give a reasonable retention time for most analytes on vancomycin and teicoplanin, while 40 % ethanol is more appropriate for ristocetin A CSP. The hexane/alcohol composition is favored on many occasions (preparative scale, for example) and offers better selectivity for some less polar compounds. Those compounds with a carbonyl group in the a or (3 position to the chiral center have an excellent chance to be resolved in this mode. The simplified method development protocols are illustrated in Fig. 2-6. The optimization will be discussed in detail later in this chapter. [Pg.38]

Another important issue that must be considered in the development of CSPs for preparative separations is the solubility of enantiomers in the mobile phase. For example, the mixtures of hexane and polar solvents such as tetrahydrofuran, ethyl acetate, and 2-propanol typically used for normal-phase HPLC may not dissolve enough compound to overload the column. Since the selectivity of chiral recognition is strongly mobile phase-dependent, the development and optimization of the selector must be carried out in such a solvent that is well suited for the analytes. In contrast to analytical separations, separations on process scale do not require selectivity for a broad variety of racemates, since the unit often separates only a unique mixture of enantiomers. Therefore, a very high key-and-lock type selectivity, well known in the recognition of biosystems, would be most advantageous for the separation of a specific pair of enantiomers in large-scale production. [Pg.61]

Enantioresolution in capillary electrophoresis (CE) is typically achieved with the help of chiral additives dissolved in the background electrolyte. A number of low as well as high molecular weight compounds such as proteins, antibiotics, crown ethers, and cyclodextrins have already been tested and optimized. Since the mechanism of retention and resolution remains ambiguous, the selection of an additive best suited for the specific separation relies on the one-at-a-time testing of each individual compound, a tedious process at best. Obviously, the use of a mixed library of chiral additives combined with an efficient deconvolution strategy has the potential to accelerate this selection. [Pg.62]

Method development remains the most challenging aspect of chiral chromatographic analysis, and the need for rapid method development is particularly acute in the pharmaceutical industry. To complicate matters, even structurally similar compounds may not be resolved under the same chromatographic conditions, or even on the same CSP. Rapid column equilibration in SFC speeds the column screening process, and automated systems accommodating multiple CSPs and modifiers now permit unattended method optimization in SFC [36]. Because more compounds are likely to be resolved with a single set of parameters in SFC than in LC, the analyst stands a greater chance of success on the first try in SFC [37]. The increased resolution obtained in SFC may also reduce the number of columns that must be evaluated to achieve the desired separation. [Pg.305]

Temperature can also be used to optimize enantioselectivity in SFC. The selectivity of most CSPs increases as temperature decreases. For this reason, most chiral separations in SFC are performed at ambient or subambient temperatures [50, 74]. Subambient temperatures are particularly useful for compounds having low conformational stability [75]. Stringham and Blackwell explored the concept of entropically driven separations [76]. As temperature increased, enantioselectivity decreased until the enantiomers co-eluted at the isoelution temperature. Further increases in temperature resulted in reversal of elution order of the enantiomers. The temperature limitations of the CSP should be considered before working at elevated temperatures. [Pg.312]

Ten years after Sharpless s discovery of the asymmetric epoxidation of allylic alcohols, Jacobsen and Katsuki independently reported asymmetric epoxidations of unfunctionalized olefins by use of chiral Mn-salen catalysts such as 9 (Scheme 9.3) [14, 15]. The reaction works best on (Z)-disubstituted alkenes, although several tri-and tetrasubstituted olefins have been successfully epoxidized [16]. The reaction often requires ligand optimization for each substrate for high enantioselectivity to be achieved. [Pg.318]


See other pages where Chiral optimization is mentioned: [Pg.9]    [Pg.9]    [Pg.9]    [Pg.9]    [Pg.2543]    [Pg.66]    [Pg.325]    [Pg.275]    [Pg.158]    [Pg.368]    [Pg.111]    [Pg.112]    [Pg.198]    [Pg.198]    [Pg.199]    [Pg.200]    [Pg.209]    [Pg.339]    [Pg.124]    [Pg.254]    [Pg.15]    [Pg.4]    [Pg.50]    [Pg.53]    [Pg.62]    [Pg.71]    [Pg.90]    [Pg.147]    [Pg.169]    [Pg.353]    [Pg.243]    [Pg.153]    [Pg.179]   
See also in sourсe #XX -- [ Pg.165 ]




SEARCH



© 2024 chempedia.info