Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Rearrangement intramolecular Reactions

The aza-[2,3]-Wittig rearrangement of a vinylaziridine-derived quaternary azir-idinium ylide (i.e., [2,3]-Stevens rearrangement) has recently been reported (Scheme 2.53) [86], The aziridinium ylide 219, generated by the intramolecular reaction of a copper carbenoid tethered to a vinylaziridine, underwent a [2,3]-Ste-vens rearrangement to furnish the bicydic amine 220 with the indolizidine skeleton. [Pg.62]

The analogons deamination reaction is not observed in l-methyl-2 -deoxy-adenosine nncleosides. ° Rather, in the adenine series, the Dimroth rearrangement occnrs (Scheme 8.4). On the contrary, in styrene adducts of 2 -deoxyadenosine, the hydroxyl residue of the adduct undergoes intramolecular reaction with the base to initiate deamination (Scheme 8.6). ° ° Similarly, cytosine residues bearing styrene adducts at the N3-position undergo rapid deamination (nearly complete deamination is seen within 75h). °°... [Pg.341]

These reactions have very low activation energies when the intermediate is a free carbene. Intermolecular insertion reactions are inherently nonselective. The course of intramolecular reactions is frequently controlled by the proximity of the reacting groups.113 Carbene intermediates can also be involved in rearrangement reactions. In the sections that follow we also consider a number of rearrangement reactions that probably do not involve carbene intermediates, but lead to transformations that correspond to those of carbenes. [Pg.905]

Knowledge of the intramolecular product distribution may allow for the partitioning of k between competitive intramolecular reactions, but one must be certain that noncarbenic routes to the products do not compete with the carbenic pathways. In particular, we must be concerned with the possible intervention of RIES (cf. Section m.C), especially when diazirines or diazoalkanes are the carbene precursors. Again, corrections for RIES can be made to quantitate the carbenic routes see, for example, the discussion of the cyclobutylhalocarbene rearrangements (Section m.C.1). [Pg.55]

Fries rearrangement.1 Rearrangement of phenyl esters with Lewis acids results in a mixture of ortho- and para-phenolic ketones. In contrast, reaction of an o-bromophenyl ester with sec-butyllithium results in exclusive formation of the orf/jo-phenolic ketone by an intramolecular acyl rearrangement.2... [Pg.69]

More /V-acylurea is generated if tertiary amine is present because the latter removes any protons that might prevent the rearrangement (see Section 2.12). The two intramolecular reactions also occur to a greater extent when interaction between the O-acylisourea and the /V-nucleophile is impeded by the side chain of the activated residue. This means that more 2-alkoxy-5(4//)-oxazolone and /V-acylurea are generated when the activated residues are hindered (see Section 1.4). A corollary of the above is that the best way to prepare an /V-acylurea, should it be needed, is to heat... [Pg.28]

Labelling experiments using both 15N and 2H indicate that the rearrangement is intramolecular. Reactions are also acid-catalysed and are believed to occur via the Wheland intermediates 74 and 75. The most likely interpretation is that the rearrangement occurs within the Wheland intermediate by a direct 1,3-shift rather than by consecutive 1,2-shifts, and that the process can be regarded as a typical [l,5]-sigmatropic rearrangement. [Pg.880]

Why should some peptide bonds be more sensitive to hydrolysis than others As discussed in the next section, the side chains of certain residues (e.g., Asp, Glu, Asn, and Gin) are able to undergo intramolecular reaction with the adjacent residue, leading to a variety of peptide bond fission and rearrangement reactions. Certain residues when located at the N- or C-termi-nus also exhibit a particular degree of reactivity. [Pg.291]

Trans-1 -allyl-2-(trimethylsilyl)cyclopentane and trans-1 -allyl-2-(trimethylsilyl)-cyclohexane are formed from the reaction of la with cyclopentene and cyclohexene, respectively. A second allylsilylation reaction of these compounds with la also gives unusual allylsilylation products, 7-cyclopent-l-enyl-2,2-dimethyl-4-(trimethylsilyl-methyl)-2-silaheptane (30%) and 4-((cyclohex-l-enyl)methyl)-2,2,8,8-tetramethyl-2,8-disilanonane (39%). As observed in the allylsilylation of 4-(trimethylsilyl-methyl)-l-alkenes, these products are likely formed via intramolecular silyl rearrangements. In this case, the results strongly suggest that a 1,5-silyl shift and... [Pg.45]

The conversion of hydroxamic acids 589 to a, S-unsaturated amides 592 reported by Hoffmagn and Madan appears to be a first-order reaction of bis-anion 590 characterized by an intramolecular proton rearrangement to one of the anionic oxygen atoms to give conjugated ion 591 (equation 260). [Pg.487]

Although thermal [2 + 2] cycloadditions are forbidden as concerted reactions by the orbital symmetry conservation rules the same structural features which promote intermolecular cy-cioadditions will also promote intramolecular reactions. In addition, the proximity between two alkene moieties dictated by the tether length and rigidity would make these processes entropically favorable. A few reports have documented thermal intramolecular cycloadditions to cyclopropenes and activated alkenes. The thermal Cope rearrangement of allylcyclopropenes apparently proceeds by a two-step mechanism in which intramolecular [2 + 2] adducts have been observed.72-73... [Pg.136]

On HY, phenylacetate dissociates into phenol and ketene (reaction a). Ortho-hydroxyacetophenone is produced partly by the Fries rearrangement of phenylacetate (intramolecular reaction, reaction b) and by trans-acylation (reaction c) while para-hydroxyacetophenone is exclusively the result of trans-acylation (reaction d). Phenylacetate can also disproportionate into phenol and acetoxyacetophenones (reaction e). Para-acetoxyacetophenone can also be formed through transesterification between para-hydroxyacetophenone and phenylacetate (reaction f).The formation of secondary products like 2-methylchromone and 4-methylcoumarine is consecutive to the formation of... [Pg.520]

A similar transformation was observed with the rhodium trifluoroacetate catalyzed decomposition of diazo ketones in the presence of benzene (Scheme 32).130 The cycloheptatrienes (147) formed in this case were acid labile and could be readily rearranged to benzyl ketones (148) on treatment with TFA. The reaction was effective even when the side chain contained reactive halogen and cyclopropyl functionality, but competing intramolecular reactions occurred with benzyl diazomethyl ketone. A more exotic example of this reaction is the rhodium(ll) trifluoroacetate catalyzed decomposition of the diazopenicillinate (149) in the presence of anisole, which resulted in the formation of two cycloheptatriene derivatives (150) and (151) (equation 35).m... [Pg.1053]

The overall mechanistic picture of these reactions is poorly understood, and it is conceivable that more than one pathway may be involved. It is generally considered that cycloheptatrienes are generated from an initially formed norcaradiene, as shown in Scheme 30. Equilibration between the cycloheptatriene and norcaradiene is quite facile and under acidic conditions the cycloheptatriene may readily rearrange to give a substitution product, presumably via a norcaradiene intermediate (Schemes 32 and 34). When alkylated products are directly formed from the intermolecular reaction of carbenoids with benzenes (Scheme 33 and equation 36) a norcaradiene considered as an intermediate alternatively, a mechanism may be related to an electrophilic substitution may be involved leading to a zwitterionic intermediate. A similar intermediate has been proposed143 in the intramolecular reactions of carbenoids with benzenes, which result in substitution products (equations 37-40). It has been reported,144 however, that a considerable kinetic deuterium isotope effect was observed in some of these systems. Unless the electrophilic attack is reversible, this would indicate that a C—H insertion mechanism is involved in the rate-determining step. [Pg.1058]

A similar unravelling of the heterocyclic ring occurred in intramolecular reactions with furans,79b,159 161 leading to cyclic 1,4-diacyl-1,3-butadienes (204 equation 42)159 and (205 equation 43).79b The ideal size for the tether was five, but less efficient capture of the carbenoid was also possible with six- and seven-membered rings. With the 3-furanyl derivative (206), the acid labile structure (207) was formed, which readily rearranged to p-hydroxyphenylacetaldehyde (208 Scheme 43).161... [Pg.1060]

Besides intermolecular reactions, curved-arrow notation is also useful in indicating bonding changes in intramolecular reactions and rearrangement. For example, Cope-type rearrangements are seen to involve changes in three pahs of bonded electrons. [Pg.81]


See other pages where Rearrangement intramolecular Reactions is mentioned: [Pg.543]    [Pg.301]    [Pg.624]    [Pg.725]    [Pg.50]    [Pg.163]    [Pg.442]    [Pg.892]    [Pg.35]    [Pg.206]    [Pg.368]    [Pg.60]    [Pg.107]    [Pg.149]    [Pg.333]    [Pg.747]    [Pg.758]    [Pg.176]    [Pg.92]    [Pg.71]    [Pg.302]    [Pg.153]    [Pg.597]    [Pg.605]    [Pg.554]    [Pg.45]    [Pg.374]    [Pg.597]    [Pg.398]    [Pg.251]    [Pg.141]    [Pg.238]   
See also in sourсe #XX -- [ Pg.72 , Pg.88 , Pg.95 ]




SEARCH



Intramolecular rearrangements

© 2024 chempedia.info