Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intramolecular processes addition reactions

The intramolecular Michael addition11 of a nucleophilic oxygen to an a,/ -unsaturated ester constitutes an attractive alternative strategy for the synthesis of the pyran nucleus, a strategy that could conceivably be applied to the brevetoxin problem (see Scheme 2). For example, treatment of hydroxy a,/ -unsaturated ester 9 with sodium hydride furnishes an alkoxide ion that induces ring formation by attacking the electrophilic //-carbon of the unsaturated ester moiety. This base-induced intramolecular Michael addition reaction is a reversible process, and it ultimately affords the thermodynamically most stable product 10 (92% yield). [Pg.734]

An unusual case of addition of a carbanion to an unconjugated carbon-carbon double bond is shown in Scheme 47a. The subsequent transfer of the amide group is also noteworthy (80CC1042). The intramolecular addition of a carbanion to an aryne is a more widely established process. Such reactions have been applied to the synthesis of indoles (Scheme 47b) (75CC745> and oxindoles (Scheme 47c) (63JOC1,80JA3646). [Pg.115]

A careful distinction must be drawn between transition states and intermediates. As noted in Chapter 4, an intermediate occupies a potential energy minimum along the reaction coordinate. Additional activation, whether by an intramolecular process (distortion, rearrangement, dissociation) or by a bimolecular reaction with another component, is needed to enable the intermediate to react further it may then return to the starting materials or advance to product. One can divert an intermediate from its normal course by the addition of another reagent. This substance, referred to as a trap or scavenger, can be added prior to the start of the reaction or (if the lifetime allows) once the first-formed intermediate has built up. Such experiments are the trapping experiments referred to in Chapters 4 and 5. [Pg.126]

Another example of a [4S+1C] cycloaddition process is found in the reaction of alkenylcarbene complexes and lithium enolates derived from alkynyl methyl ketones. In Sect. 2.6.4.9 it was described how, in general, lithium enolates react with alkenylcarbene complexes to produce [3C+2S] cycloadducts. However, when the reaction is performed using lithium enolates derived from alkynyl methyl ketones and the temperature is raised to 65 °C, a new formal [4s+lcj cy-clopentenone derivative is formed [79] (Scheme 38). The mechanism proposed for this transformation supposes the formation of the [3C+2S] cycloadducts as depicted in Scheme 32 (see Sect. 2.6.4.9). This intermediate evolves through a retro-aldol-type reaction followed by an intramolecular Michael addition of the allyllithium to the ynone moiety to give the final cyclopentenone derivatives after hydrolysis. The role of the pentacarbonyltungsten fragment seems to be crucial for the outcome of this reaction, as experiments carried out with isolated intermediates in the absence of tungsten complexes do not afford the [4S+1C] cycloadducts (Scheme 38). [Pg.87]

On the other hand, many reactions are known where in a first intermolecular step a functionality is introduced which than can undergo an intramolecular reaction. A nice example is the reaction of dienone 0-34 with methyl acrylate in the presence of diethylaluminum chloride to give the bridged compound 0-35 (Scheme 0-11). The first step is an intermolecular Michael addition, which is followed by an intramolecular Michael addition. This domino process is the key step of the total synthesis of valeriananoid A, as described by Hagiwara and coworkers [21]. [Pg.7]

Another method that yields quinolizidine derivatives by creation of two ct-bonds from acyclic precursors is based on a domino process involving a sequence of a double N-deprotection and a double intramolecular Michael addition sequence of reactions, as summarized in Scheme 75 <2002TL6505>. [Pg.49]

Iodo-2-alkynoates (e.g., compound 380) react with 6-chloropropylamines (e.g., compound 381) to give quinolizine derivatives in a single synthetic operation (Scheme 88). The process comprises a sequence of an Sn2 reaction that yields secondary amine 382, an intramolecular Michael addition to give the piperidine derivative 383, halogen... [Pg.55]

In recent years, interest in radical-based transformations of allenes has been renewed for two major reasons. First, a number of useful intramolecular additions of carbon-centered radicals to 1,2-dienes have been reported, which allowed syntheses of complex natural product-derived target molecules to be accomplished in instances where other methods have failed to provide similar selectivities. Further, a large body of kinetic and thermochemical data has become accessible from results of experimental and theoretical investigations in order to predict selectivities in addition reactions to allenes more precisely. Such contributions originated predominantly from (i) studies directed towards an understanding of the incineration process,... [Pg.701]

In qualitative terms, the rearrangement reaction is considerably more efficient for the oxime acetate 107b than for the oxime ether 107a. As a result, the photochemical reactivity of the oxime acetates 109 and 110 was probed. Irradiation of 109 for 3 hr, under the same conditions used for 107, affords the cyclopropane 111 (25%) as a 1 2 mixture of Z.E isomers. Likewise, DCA-sensitized irradiation of 110 for 1 hr yields the cyclopropane derivative 112 (16%) and the dihydroisoxazole 113 (18%). It is unclear at this point how 113 arises in the SET-sensitized reaction of 110. However, this cyclization process is similar to that observed in our studies of the DCA-sensitized reaction of the 7,8-unsaturated oximes 114, which affords the 5,6-dihydro-4//-l,2-oxazines 115 [68]. A possible mechanism to justify the formation of 113 could involve intramolecular electrophilic addition to the alkene unit in 116 of the oxygen from the oxime localized radical-cation, followed by transfer of an acyl cation to any of the radical-anions present in the reaction medium. [Pg.29]

The radical-anions from from alkenes with electron withdrawing substituents will add to carbon dioxide [28]. This process involves the alkene radical-anion, which transfers an electron to carbon dioxide for which E° = -2.21 V vs. see [29]. Further reaction then occurs by combination of carbon dioxide and alkene radcal-anions [30]. The carbanion centre formed in this union may either be protonated or react with another molecule of carbon dioxide. If there is a suitable Michael acceptor group present, this carbanion undergoes an intramolecular addition reaction... [Pg.59]

Another interesting example of Ugi-Michael process is represented by the synthesis of pyridones 145 (Fig. 28), which originate from an intramolecular domino addition-elimination reaction of the active methylene group proceeding through intermediate 144 [120]. [Pg.24]

C-Glycoside synthesis may be achieved in twro ways. Intermolecular radical addition reactions are observed with (i) polarized, electron-deficient alkenes, (ii) alkenes that provide a high level of stabilization to the initial radical adduct and (in) substrates that undergo a facile fragmentation (e.g. allyl stannanes). Additions to less reactive substrates, though not favored for intermolecular processes, are observed if the two components are tethered in an intramolecular array. [Pg.46]


See other pages where Intramolecular processes addition reactions is mentioned: [Pg.38]    [Pg.528]    [Pg.70]    [Pg.2]    [Pg.70]    [Pg.2]    [Pg.248]    [Pg.214]    [Pg.419]    [Pg.460]    [Pg.417]    [Pg.79]    [Pg.382]    [Pg.466]    [Pg.591]    [Pg.664]    [Pg.298]    [Pg.13]    [Pg.354]    [Pg.56]    [Pg.92]    [Pg.261]    [Pg.57]    [Pg.171]    [Pg.299]    [Pg.362]    [Pg.167]    [Pg.616]    [Pg.333]    [Pg.72]    [Pg.229]    [Pg.65]    [Pg.80]    [Pg.314]    [Pg.308]    [Pg.65]    [Pg.451]    [Pg.659]    [Pg.75]   
See also in sourсe #XX -- [ Pg.26 , Pg.71 , Pg.93 ]




SEARCH



Addition process

Intramolecular addition

Intramolecular processes

Intramolecular reactions addition

Intramolecular reactions process

© 2024 chempedia.info