Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intermolecular cationic

With the cylindrical cryptands, each macrocycle may bind one cation so that both mono- and dinuclear cryptates may be formed. Although the 12-membered (N202) macrocycles of ligand 5 are too small to bind two cations within each of the macrocycles, variable temperature 13C-NMR measurements have revealed intramolecular cation exchange between identical sites at the top and bottom of this cryptand, for Ca2+, Sr2+, and Ba2+. Cation jump between the two sites is fast with respect to intermolecular cation exchange, modeling the elementary jump processes of cations between binding sites in membrane channels (91). [Pg.18]

Crown ether 4 has been shown to be a source of unusual dinuclear silver(l) complexes <2002ICA(332)18>. In the crystal, the silver ions interact with the crown ether ligand at both the hard donor ethereal oxygens and soft benzene ring carbon atoms via intermolecular cation-Tt-interaction in -fashion, as depicted in Figure 6. The dimeric structure is further stabilized by the occurrence of intermolecular Tt-Tt-intcractions between facing benzo groups. [Pg.671]

Scheme 4.143 has been performed in [144]. Single-crystal X-ray diffraction data showed that intermolecular cation...x , and CH...it... [Pg.362]

Although cyclopropane formation will be considered in more detail later (section C.4), it is appropriate to mention a rather striking precedent for the proposed intermolecular cationic condensation of (14) to (15) and (16-OPP). The reaction of phenyl diazomethane with excess olefins e.g., /ran5-2-butene) at -70° in the presence of trifluoroacetic acid affords cyclopropanes and benzylated products in fairly high yield (40—60%) along with benzyl trifluoroacetate (30—40%) 62, 63). Cyclopropane formation is stereospecific with cis- and trans-2-butcnc. [Pg.84]

Single-Stack Acceptor. Simple charge-transfer salts formed from the planar acceptor TCNQ have a stacked arrangement with the TCNQ units facing each other (intermolecular distances of ca 0.3 nm (- 3). Complex salts of TCNQ such as TEA(TCNQ)2 consist of stacks of parallel TCNQ molecules, with cation sites between the stacks (17). The interatomic distance between TCNQ units is not always uniform in these salts, and formation of TCNQ dimers (as in TEA(TCNQ)2) and trimers (as in Cs2(TCNQ)Q can lead to complex crystal stmctures for the chainlike salts. [Pg.240]

Crystal stmcture analyses of cyanine and related dyes are reviewed in Ref. 32. Most typical sensitizers are nearly planar, with angles of less than 15° between planes defined by heterocycHc rings. Distinct solvent of crystallization is present in most of the cationic dyes. X-ray crystal analyses also provide intermolecular data. Because of photographic use of cyanine and carbocyanine dyes, the cation-cation arrangements of most interest have been those for l,l -dieth5l-2,2 -quinocyanine chloride [2402-42-8] 5,5, 6,6 -tetrachloro-l,l, 3,3 -tetraethylbenzimidazolocarbocyanineiodide [3520-43-2] and 5,5 -dichloro-3,3, 9-triethylthiacarbocyanine bromide [18426-56-7] (32) (see Fig. 8). [Pg.396]

When 1-hydroxymelatonin (19) is treated with acid, removal of its 1-hydroxy group leaves an indolyl cation (a hybrid of resonance structures 254,168, and so on) as shown in Scheme 37. If there is a subsequent intramolecular nucleophilic attack by the Ab-nitrogen atom on the side chain or if an intermolecular attack by suitable nucleophiles occurs on this intermediate cation, the birth of a new type of product can be expected. [Pg.136]

The mechanism for the formation of ( )-169 is explained in terms of an intermolecular nucleophilic dimerization. Nucleophilic addition of C-3 of 19 to the 3 position of the initially generated cation 168 gives an imine-nitrone... [Pg.137]

The chiral information of stereogenic centers in the allyl moiety of the precursor is destroyed on deprotonation. While an i/3-bound ion pair with a planar carbon frame is a chiral compound, usually rapid racemization takes place by intra- or intermolecular migration of the cation from one face to the opposite one. The sole exceptions known at present are secondary 2-alkenyl carbamates with X = dialkylaminocarbonyloxy21, in which the cation is tied by the chelating ligand, see Section 1.3.3.3.1.2. [Pg.232]

The monolithium salt of 4-hydroxy-4-(phenylethynyl)-2.5-cyclohexadienone (12), prepared in situ by the addition of lithium acetylide to /7-benzoquinone, was treated with methylmagnesium chloride in l HF-TMEDA or in THF —DMPU. The syn-, 4-addition adduct 13, derived from intramolecular delivery of the carbon nucleophile by the hydroxy oxygen, as well as the <7s-1,4-diol 14, obtained via intermolecular 1,2-addition, were obtained in varying amounts depending on the conditions. The selectivity on 1,4- to 1,2-addition increased by the addition of cation chelating agents such as DMPU, TMEDA, and 15-crown-5. Although the 1,4 to 1,2... [Pg.901]

These fragments either combine intramolecularly to form the ortho and para nitro compounds or dissociate completely and then undergo an intermolecular reaction to form the same products. The theory was not developed to include a detailed transition state and no mention was made of how the para isomer was formed. Reduction of the cation-radical could give the amine (which was observed experimentally76), but one would expect the concurrent formation of nitrogen dioxide and hence nitrite and nitrate ions however, the latter has never been... [Pg.452]

Optimization of the valence and dihedral angles yields planar cyclic structures for the 3- to 5-ring intermediates in contrast to a chair conformation for that of the 6-ring. In the cases of n = 4, 5, 6 the oxygen atom is placed almost in the plane of the three C-atoms directly bonded to it. Therefore, an intramolecular solvation of the cationic chain end by methoxy groups which are bonded to the polymer backbone is preferred in the gas phase. The calculations show that for a non-polar solvent such as CH2C12 a decrease in stability of the cyclic intermediates exists. But this decrease does not result in a total break of the intramolecular solvation (Table 13). An equilibrium between open chain and cyclic intermediates must only be taken into account in more polar solvents, due to the competition of intra- and intermolecular solvation. [Pg.206]

The simplest primary alkyl cations, CHJ and C2H, are formed from methane and ethane, respectively, by SbPs—PHSO3 (Olah and Schlosberg, 1968 Olah et al., 1969) and by SbPs (Lukas and Kramer, 1971). In these cases, intermolecular electrophilic substitution of these ions at the precursor alkanes leads to oligocondensation products, e.g. tertiary butyl and hexyl ions. In the presence of carbon monoxide it has been found possible to intercept the intermediate CHJ and C2H quantitatively as oxocarbonium ions (Hogeveen et al., 1969 Hogeveen and Roobeek, 1972). The competition between the reactions of the ethyl cation with ethane and carbon monoxide, respectively, is illustrated by the following equations ... [Pg.44]

In contrast, reaction of ligand 72 with 4,4 -biphenyldiboronic acid has been successful and diboronate 73 is obtained in yields of 33%. This complex acts as a receptor for the paraquat dication forming a 1 1 complex with an association constant of 320 in acetone. The intermolecular forces responsible for the complexation are ion-dipole stabilization between the dative N B dipoles and the two cationic centers in paraquat, attractive tz-tz interactions between... [Pg.21]

The mechanism" of intermolecular rearrangement can involve free alkyl cations, but there is much evidence to show that this is not necessarily the case. For example, many of them occur without rearrangement within the alkyl group. The following mechanism has been proposed for intermolecular rearrangement without the involvement of carbocations that are separated from the ring." ... [Pg.731]

Substituted 1,2,3,4-tetrahydroquinolines (e.g., 61) are formed with high regio- and stereoselectivity in high yield by intermolecular [A+2] cycloadditions of cationic 2-aza-butadienes and various dienophiles <95CC2137,96SL34>. [Pg.233]

This manuscript describes the dendritic macromolecules for optical and optoelectronic apph-cations, particularly stimulated emission, laser emission, and nonlinear optics. Dendrimers have been designed and synthesized for these applications based on simple concepts. A coreshell structure, through the encapsulation of active imits by dendritic branches, or a cone-shaped structure, through the step-by-step reactions of active imits, can provide particular benefits for the optical high-gain media and nonlinear optical materials. It also described experimental results that support the methods presented for designing and fabricating functionalized dendrimers for optoelectronic applications, and theoretical results that reveal the intermolecular electronic effect of the dendritic structure. [Pg.205]

Intermolecular hydroalkoxylation of 1,1- and 1,3-di-substituted, tri-substituted and tetra-substituted allenes with a range of primary and secondary alcohols, methanol, phenol and propionic acid was catalysed by the system [AuCl(IPr)]/ AgOTf (1 1, 5 mol% each component) at room temperature in toluene, giving excellent conversions to the allylic ethers. Hydroalkoxylation of monosubstituted or trisubstituted allenes led to the selective addition of the alcohol to the less hindered allene terminus and the formation of allylic ethers. A plausible mechanism involves the reaction of the in situ formed cationic (IPr)Au" with the substituted allene to form the tt-allenyl complex 105, which after nucleophilic attack of the alcohol gives the o-alkenyl complex 106, which, in turn, is converted to the product by protonolysis and concomitant regeneration of the cationic active species (IPr)-Au" (Scheme 2.18) [86]. [Pg.46]


See other pages where Intermolecular cationic is mentioned: [Pg.237]    [Pg.241]    [Pg.94]    [Pg.931]    [Pg.203]    [Pg.207]    [Pg.931]    [Pg.237]    [Pg.241]    [Pg.94]    [Pg.931]    [Pg.203]    [Pg.207]    [Pg.931]    [Pg.147]    [Pg.255]    [Pg.528]    [Pg.130]    [Pg.66]    [Pg.94]    [Pg.240]    [Pg.28]    [Pg.173]    [Pg.211]    [Pg.46]    [Pg.544]    [Pg.187]    [Pg.786]    [Pg.291]    [Pg.268]    [Pg.271]    [Pg.153]    [Pg.105]    [Pg.106]    [Pg.100]   
See also in sourсe #XX -- [ Pg.2 , Pg.5 ]




SEARCH



Aniline cation intermolecular hydrogen bonds

Cations intermolecular hydrogen bonds

Intermolecular cationic cross-links

Intermolecular cationic cycloaddition

© 2024 chempedia.info