Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interfacial tension, energy

Components of interfacial tension (energy) for the equilibrium of a liquid drop on a smooth surface in contact with air (or the vapor) phase. The liquid (in most instances) will not wet the surface but remains as a drop having a definite angle of contact between the liquid and solid phase. [Pg.142]

As shown by Fowkes (1968) the interfacial energy between two phases (whose surface tensions - with respect to vacuum - are y1 and y2) is subject to the resultant force field made up of components arising from attractive forces in the bulk of each phase and the forces, usually the London dispersion forces (cf. Eq. 4.2) operating accross the interface itself. Then the interfacial tension (energy) between two phases y12 s given by... [Pg.143]

Figure III-l depicts a hypothetical system consisting of some liquid that fills a box having a sliding cover the material of the cover is such that the interfacial tension between it and the liquid is zero. If the cover is slid back so as to uncover an amount of surface dJl, the work required to do so will he ydSl. This is reversible work at constant pressure and temperature and thus gives the increase in free energy of the system (see Section XVII-12 for a more detailed discussion of the thermodynamics of surfaces). Figure III-l depicts a hypothetical system consisting of some liquid that fills a box having a sliding cover the material of the cover is such that the interfacial tension between it and the liquid is zero. If the cover is slid back so as to uncover an amount of surface dJl, the work required to do so will he ydSl. This is reversible work at constant pressure and temperature and thus gives the increase in free energy of the system (see Section XVII-12 for a more detailed discussion of the thermodynamics of surfaces).
Van Oss and Good [148] have compared solubilities and interfacial tensions for a series of alcohols and their corresponding hydrocarbons to determine the free energy of hydration of the hydroxyl group they find -14 kJ/mol per —OH group. [Pg.91]

Molecular dynamics and density functional theory studies (see Section IX-2) of the Lennard-Jones 6-12 system determine the interfacial tension for the solid-liquid and solid-vapor interfaces [47-49]. The dimensionless interfacial tension ya /kT, where a is the Lennard-Jones molecular size, increases from about 0.83 for the solid-liquid interface to 2.38 for the solid-vapor at the triple point [49], reflecting the large energy associated with a solid-vapor interface. [Pg.267]

The fluctuations of the local interfacial position increase the effective area. This increase in area is associated with an increase of free energy Wwhich is proportional to the interfacial tension y. The free energy of a specific interface configuration u(r,) can be described by the capillary wave Hamiltonian ... [Pg.2372]

The quantity of energy required to separate the two Hquids increases as the interfacial tension between them decreases the lower the interfacial energy, the stronger the adhesion. [Pg.235]

The Good-Girifalco theory [77-82] was originally formulated to make an attempt to correlate the solid-liquid interfacial tension to the solid surface energy and the liquid surface tension through an interaction parameter, basic formulation of the theory is ... [Pg.113]

In the absence of specific interactions of the receptor - ligand type the change in the Helmholtz free energy (AFadj due to the process of adsorption is AFads = yps - ypi - Ysi, where Yps, YPi and ys, are the protein-solid, protein-liquid and solid-liquid interfacial tensions, respectively [5], It is apparent from this equation that the free energy of adsorption of a protein onto a surface should depend not only of the surface tension of the adhering protein molecules and the substrate material but also on the surface tension of the suspending liquid. Two different situations are possible. [Pg.137]

Figure 17. Energy for the nucleation of a surface film on metal electrode. M, metal OX, oxide film EL, electrolyte solution. Aj is the activation barrier for the formation of an oxide-film nucleus and rj is its critical radius. 7 a is the interfacial tension of the metal-electrolyte interface, a is the interfacial tension of the film-electrolyte interface. (From N. Sato, J. Electro-chem. Soc. 129, 255, 1982, Fig. 5. Reproduced by permission of The Electrochemical Society, Inc.)... Figure 17. Energy for the nucleation of a surface film on metal electrode. M, metal OX, oxide film EL, electrolyte solution. Aj is the activation barrier for the formation of an oxide-film nucleus and rj is its critical radius. 7 a is the interfacial tension of the metal-electrolyte interface, a is the interfacial tension of the film-electrolyte interface. (From N. Sato, J. Electro-chem. Soc. 129, 255, 1982, Fig. 5. Reproduced by permission of The Electrochemical Society, Inc.)...

See other pages where Interfacial tension, energy is mentioned: [Pg.116]    [Pg.366]    [Pg.116]    [Pg.366]    [Pg.381]    [Pg.70]    [Pg.108]    [Pg.281]    [Pg.335]    [Pg.335]    [Pg.2840]    [Pg.123]    [Pg.230]    [Pg.427]    [Pg.234]    [Pg.235]    [Pg.306]    [Pg.307]    [Pg.197]    [Pg.205]    [Pg.1418]    [Pg.1481]    [Pg.1637]    [Pg.1810]    [Pg.2554]    [Pg.139]    [Pg.7]    [Pg.357]    [Pg.600]    [Pg.652]    [Pg.657]    [Pg.1189]    [Pg.137]    [Pg.27]    [Pg.128]    [Pg.478]    [Pg.31]   
See also in sourсe #XX -- [ Pg.146 , Pg.243 , Pg.381 ]




SEARCH



Interfacial tension

© 2024 chempedia.info