Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Indole 3-iodo

Indole, 3-hydroxymethyl-2-phenyl-stability, 4, 272 Indole, I-hydroxy-2-phenyl-synthesis, 4, 363 Indole, 2-iodo-synthesis, 4, 216 Indole, 3-iodo-reaetions, 4, 307 synthesis, 4, 216 Indole, 2-iodo-l-methyl-reaetions, 4, 307 Indole, 2-lithio-synthesis, 4, 308 Indole, 3-lithio-synthesis, 4, 308 Indole, 2-mereapto-tautomerism, 4, 38, 199 Indole, 3-mercapto-tautomerism, 4, 38, 199 Indole, 3-methoxy-synthesis, 4, 367 Indole, 5-methoxy-oxidation, 4, 248 Indole, 7-methoxy-2,3-dimethyl-aeetylation, 4, 219 benzoylation, 4, 219 Indole, 5-methoxy-l-methyl-reduetion, 4, 256 Indole, 5-methoxy-l-methyl-3-(2-dimethylaminoethyl)-reaetions... [Pg.668]

Bromo-3-iodo-l-(4-methylphenylsulfonyl)indole (0.476 g, 1.00 mmol), methyl acrylate (0.108 g, 1.25 mmol), EtjN (0.127 g, 1.25 mmol) and Pd(OAc)2 (11 mg, 0.050 mmol) were mixed in a tube, purged with argon and the tube was sealed and heated to 100°C for 1 h. After cooling, it was opened and mixed with CH2CI2 (50 ml). The solution was washed with water and dried (Na SOJ. The residue was purified by chromatography on silica using 1 3 benzene-hexane for elution. The yield was 0.350 g (81%). [Pg.112]

Standard Heck conditions were used to introduce the dchydroalanine side-chain with 4-bromo-3-iodo-l-(4-methylphenylsulfonyl)indole[12]. Using 4-fluoro-3-iodo-l-(4-methylphenylsulfonyl)indole as the reactant, Merlic and Semmelhack found that addition of 2 eq, of LiCl or KCl improved yields in reactions carried out with 10% Pd/C as the catalyst[13]. The addition of the dehyroalanine side chain can also be done by stoichiometric Pd-mediated vinylation (see Section 11.2). A series of C-subslituled dehydro tryptophans was prepared in 40-60% yield by this method[14]. [Pg.132]

Ha.logena.tlon, 3-Chloroindole can be obtained by chlorination with either hypochlorite ion or with sulfuryl chloride. In the former case the reaction proceeds through a 1-chloroindole intermediate (13). 3-Chloroindole [16863-96-0] is quite unstable to acidic aqueous solution, in which it is hydroly2ed to oxindole. 3-Bromoindole [1484-27-1] has been obtained from indole using pytidinium tribromide as the source of electrophilic bromine. Indole reacts with iodine to give 3-iodoindole [26340-47-6]. Both the 3-bromo and 3-iodo compounds are susceptible to hydrolysis in acid but are relatively stable in base. [Pg.84]

Both 3-bromo- and 3-iodo-indoles have been selectively prepared by titrimetric addition to the heterocycle of the halogen dissolved in dimethylformamide. The mildly basic solvent is probably responsible for trapping the generated hydrogen halide (82S1096). [Pg.261]

Introduction of an iodine to C-2 of indole can be accomplished using lithium derivatives. Since direct iodination tends to give mixtures it is essential to activate the 2-position at the expense of the inherently more reactive 3-position. This has been done by lithiating 1-f-butoxycarbonylin-doles (25) and then converting them into iodo derivatives before deprotection (85JHC505) (Scheme 19). Alternatively carbon dioxide can be used... [Pg.265]

AT-acetyltryptamines could be obtained via microwave-assisted transition-metal-catalyzed reactions on resin bound 3-[2-(acetylamino)ethyl]-2-iodo-lH-indole-5-carboxamide. While acceptable reaction conditions for the application of microwave irradiation have been identified for Stille heteroaryla-tion reactions, the related Suzuki protocol on the same substrate gave poor results, since at a constant power of 60 W, no full conversion (50-60%) of resin-bound 3-[2-(acetylamino)ethyl]-2-iodo-lH-indole-5-carboxamide could be obtained even when two consecutive cross-coupling reaction cycles (involving complete removal of reagents and by-products by washing off the resin) were used (Scheme 36). Also under conventional heating at 110 °C, and otherwise identical conditions, the Suzuki reactions proved to be difficult since two cross-coupling reaction cycles of 24 h had to be used to achieve full conversion. [Pg.174]

A novel route to indoles and quinolines has been developed by sequential Wiltig and Heck reactions <96CC2253>. Thus, treatment of o-bromo- or iodo-lV-lrifluoroaceiylanilines (86) with a stabilized phosphorane affords the corresponding enamines 87 as a mixture of isomers. Cyclization to 88 is effected by heating with palladium acetate, tri phenyl phosphine, and bu.se. [Pg.106]

Purification of 2-(4 -[ I]iodo-biphenyl-4-sulfonylamino)-3-(l//-indol-3-yl)-propionic acid and 2-(4 -[ I]iodo-biphenyl-4-sulfonylamino)-3-(lff-indol-3-yl)-propionamide... [Pg.224]

The synthesis of both 3-iodo-l-(phenyIsuIfonyl)indole (5) and 2,3-diiodo-l-(phenylsulfonyl)-indole (6) can be achieved in excellent overall yields as illustrated [10]. The preparation of 5 is done in one pot. [Pg.78]

An entirely different approach to 3-haloindoles involves a mercuration/iodination sequence, which has been adopted by Hegedus to prepare 4-bromo-3-iodo-l-(4-toluenesulfonyl)indole for use in the synthesis of ergot alkaloids [20,21], We will discuss this chemistry later. [Pg.78]

Conventional aryldiazonium salt chemistry on 4-aminoindole provides 4-iodo-l-(4-toluenesulfonyl)indole (13), 4-iodoindole (14), and l-(fm-butyldimethylsilyl)-4-iodoindole (15) in excellent yields as shown [25, 26],... [Pg.79]

Kondo employed the Kumada coupling using the Grignard reagents derived from 2- and 3-iodo-l-(phenylsulfonyl)indole to prepare the corresponding phenyl derivatives in 50% yield [92], Widdowson expanded the scope of the Kumada coupling and provided some insight into the mechanism [93],... [Pg.90]

In a synthesis of polyketides, Kocienski crafted indole 78 from 2-iodo-l-methylindole and the appropriate organozinc reagent 77 derived from the corresponding stannane (76), which itself was reluctant to undergo a Stille coupling [106],... [Pg.92]

Palladium-catalyzed reactions of arylboronic acids have been utilized to craft precursors for constructing indole rings. Suzuki found that tris(2-ethoxyethenyl)borane (149) and catechol-derived boranes 150 readily couple with o-iodoanilines to yield 151, which easily cyclize to indoles 152 with acid [158]. Kumar and co-workers used this method to prepare 5-(4-pyridinyl)-7-azaindoles from 6-amino-5-iodo-2-methyl-3,4 -bipyridyl [159], A similar scheme with catechol-vinyl sulfide boranes also leads to indoles [160]. A Suzuki protocol has been employed by Sun and co-workers to synthesize a series of 6-aryloxindoles [161]. [Pg.105]

Somei adapted this chemistry to syntheses of (+)-norchanoclavine-I, ( )-chanoclavine-I, ( )-isochanoclavine-I, ( )-agroclavine, and related indoles [243-245, 248]. Extension of this Heck reaction to 7-iodoindoline and 2-methyl-3-buten-2-ol led to a synthesis of the alkaloid annonidine A [247]. In contrast to the uneventful Heck chemistry of allylic alcohols with 4-haloindoles, reaction of thallated indole 186 with 2-methyl-4-trimethylsilyl-3-butyn-2-ol affords an unusual l-oxa-2-sila-3-cyclopentene indole product [249]. Hegedus was also an early pioneer in exploring Heck reactions of haloindoles [250-252], Thus, reaction of 4-bromo-l-(4-toluenesulfonyl)indole (11) under Heck conditions affords 4-substituted indoles 222 [250], Murakami described the same reaction with ethyl acrylate [83], and 2-iodo-5-(and 7-) azaindoles undergo a Heck reaction with methyl acrylate [19]. [Pg.124]

The cyclization of IV-allyl-o-haloanilines was adapted to the solid phase for both indoles [332, 333] and oxindoles [334]. For example, as illustrated below, a library of l-acyl-3-aIkyl-6-hydroxyindoles is readily assembled from acid chlorides, allylic bromides, and 4-bromo-3-nitroanisole [332], Zhang and Maryanoff used the Rink amide resin to prepare Af-benzylindole-3-acetamides and related indoles via Heck cyclization [333], and Balasubramanian employed this technology to the synthesis of oxindoles via the palladium cyclization of o-iodo-N-acryloylanilines [334], This latter cyclization route to oxindoles is presented later in this section. [Pg.138]

Grigg and Xu have developed a variety of so-called queuing cascades involving allenes. The intra-intermolecular carbopalladation sequence of the <9-iodo-A-methyl-A -(methylallyl)aniline 142 and 1,1-dimethylallene 143 with subsequent / -dehydropalladation leads to the 1,3-dienyl-substituted indole derivative 144, which is immediately trapped by an added dienophile (e.g., A-methylmaleimide) in a Diels-Alder reaction to yield 145 (Scheme 37)7 ... [Pg.327]


See other pages where Indole 3-iodo is mentioned: [Pg.110]    [Pg.112]    [Pg.51]    [Pg.79]    [Pg.516]    [Pg.137]    [Pg.26]    [Pg.119]    [Pg.48]    [Pg.259]    [Pg.106]    [Pg.163]    [Pg.186]    [Pg.197]    [Pg.105]    [Pg.109]    [Pg.50]    [Pg.114]    [Pg.300]    [Pg.78]    [Pg.99]    [Pg.112]    [Pg.113]    [Pg.136]    [Pg.224]    [Pg.48]    [Pg.48]    [Pg.343]    [Pg.374]    [Pg.38]    [Pg.1216]   
See also in sourсe #XX -- [ Pg.59 , Pg.266 ]




SEARCH



© 2024 chempedia.info