Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

In the stratosphere

Ozone, known for its beneficial role as a protective screen against ultraviolet radiation in the stratosphere, is a major pollutant at low altitudes (from 0 to 2000 m) affecting plants, animals and human beings. Ozone can be formed by a succession of photochemical reactions that preferentially involve hydrocarbons and nitrogen oxides emitted by the different combustion systems such as engines and furnaces. [Pg.261]

More complex ions are created lower in the atmosphere. Almost all ions below 70-80 km are cluster ions. Below this altitude range free electrons disappear and negative ions fonn. Tln-ee-body reactions become important. Even though the complexity of the ions increases, the detemiination of the final species follows a rather simple scheme. For positive ions, fomiation of H (H20) is rapid, occurring in times of the order of milliseconds or shorter in the stratosphere and troposphere. After fomiation of H (H20), the chemistry involves reaction with species that have a higher proton affinity than that of H2O. The resulting species can be... [Pg.818]

Viggiano A A 1993 In-situ mass spectrometry and ion chemistry in the stratosphere and troposphere Mass Spectron. Rev. 12 115-37... [Pg.827]

Measurements of ozone (O3) concentrations in the atmosphere are of particular importance. Ozone absorbs strongly in the ultraviolet region and it is this absorption which protects us from a dangerously high dose of ultraviolet radiation from the sun. The vitally important ozone layer lies in the stratosphere and is typically about 10 km thick with a maximum concentration about 25 km above the surface of the earth. Extreme depletion of ozone in a localised part of the atmosphere creates what is known as an ozone hole. [Pg.380]

Measurements of ozone concentration in the ozone layer in the stratosphere are made in the less intense Huggins band to avoid complete absorption of the laser radiation. Again, the two or three wavelength DIAL method is used to make allowance for background aerosol scattering. A suitable laser for these measurements is the XeCl pulsed excimer laser (see Section 9.2.8) with a wavelength of 308 nm, close to the peak absorption of the Huggins... [Pg.381]

The importance of ozone in the stratosphere has been stressed in Section 9.3.8. The fact that ozone can be decomposed by the halogen monoxides CIO, BrO and 10 means that their presence in the stratosphere contributes to the depletion of the ozone layer. For example, iodine, in the form of methyl iodide, is released into the atmosphere by marine algae and is readily photolysed, by radiation from the sun, to produce iodine atoms which can react with ozone to produce 10 ... [Pg.385]

Stratospheric Depletion. In the stratosphere, is formed naturally when O2 is dissociated by uv solar radiation in the region 180—240... [Pg.379]

Fig. 8. A porous interplanetary dust particle collected in the stratosphere. The particle is 10 ]lni across and is composed of anhydrous... Fig. 8. A porous interplanetary dust particle collected in the stratosphere. The particle is 10 ]lni across and is composed of anhydrous...
Ozone, which occurs in the stratosphere (15—50 km) in concentrations of 1—10 ppm, is formed by the action of solar radiation on molecular oxygen. It absorbs biologically damaging ultraviolet radiation (200—300 nm), prevents the radiation from reaching the surface of the earth, and contributes to thermal equiHbrium on earth. [Pg.490]

Ozone is formed rapidly in the stratosphere (15—50 km) by the action of short-wave ultraviolet solar radiation (<240 nm) on molecular oxygen,... [Pg.495]

Most ozone is formed near the equator, where solar radiation is greatest, and transported toward the poles by normal circulation patterns in the stratosphere. Consequendy, the concentration is minimum at the equator and maximum for most of the year at the north pole and about 60°S latitude. The equihbrium ozone concentration also varies with altitude the maximum occurs at about 25 km at the equator and 15—20 km at or near the poles. It also varies seasonally, daily, as well as interaimuaHy. Absorption of solar radiation (200—300 nm) by ozone and heat Hberated in ozone formation and destmction together create a warm layer in the upper atmosphere at 40—50 km, which helps to maintain thermal equihbrium on earth. [Pg.495]

Depletion of the Ozone Layer. As a constituent of the atmosphere, ozone forms a protective screen by absorbing radiation of wavelengths between 200 and 300 nm, which can damage DNA and be harmful to life. Consequently, a decrease in the stratospheric ozone concentration results in an increase in the uv radiation reaching the earth s surfaces, thus adversely affecting the climate as well as plant and animal life. Pot example, the incidence of skin cancer is related to the amount of exposure to uv radiation. [Pg.503]

A smaller factor in ozone depletion is the rising levels of N2O in the atmosphere from combustion and the use of nitrogen-rich fertilizers, since they ate the sources of NO in the stratosphere that can destroy ozone catalyticaHy. Another concern in the depletion of ozone layer, under study by the National Aeronautics and Space Administration (NASA), is a proposed fleet of supersonic aircraft that can inject additional nitrogen oxides, as weU as sulfur dioxide and moisture, into the stratosphere via their exhaust gases (155). Although sulfate aerosols can suppress the amount of nitrogen oxides in the stratosphere... [Pg.503]

Peroxonitrite is beHeved to be present in the crystals of nitric acid trihydrate that form in the stratosphere and in Martian soil (see Extraterrestrial materials). Peroxonitrous acid may be present in mammalian blood and other biochemical systems. However, peroxonitric acid, HNO, is not known. Before the chemistry of peroxonitrous acid was understood, these two acids were sometimes confused. [Pg.93]

The key gas-phase reactions occurring in the stratosphere are generally known. Comprehensive reviews of kinetic data have led to general consensus on the rate parameters that should be used in stratospheric models (91). Nevertheless, discrepancies are stiU apparent when the chemical components of... [Pg.386]

Because of the expanded scale and need to describe additional physical and chemical processes, the development of acid deposition and regional oxidant models has lagged behind that of urban-scale photochemical models. An additional step up in scale and complexity, the development of analytical models of pollutant dynamics in the stratosphere is also behind that of ground-level oxidant models, in part because of the central role of heterogeneous chemistry in the stratospheric ozone depletion problem. In general, atmospheric Hquid-phase chemistry and especially heterogeneous chemistry are less well understood than gas-phase reactions such as those that dorninate the formation of ozone in urban areas. Development of three-dimensional models that treat both the dynamics and chemistry of the stratosphere in detail is an ongoing research problem. [Pg.387]

Some hydrogen cyanide is formed whenever hydrocarbons (qv) are burned in an environment that is deficient in air. Small concentrations are also found in the stratosphere and atmosphere. It is not clear whether most of this hydrogen cyanide comes from biological sources or from high temperature, low oxygen processes such as coke production, but no accumulation has been shown (3). [Pg.375]

In the last decade, the refrigerant issue is extensively discussed due to the accepted hypothesis that the chlorine and bromine atoms from halocarbons released to the environment were using up ozone in the stratosphere, depleting it specially above the polar regions. Montreal Protocol and later agreements ban use of certain CFCs and halon compounds. It seems that all CFCs and most of the HCFCs will be out of produc tion by the time this text will be pubhshed. [Pg.1124]

During the mid-1980s, each September scientists began to observe a decrease in ozone in the stratosphere over Antarctica. These observations are referred to as "ozone holes." In order to understand ozone holes, one needs to know how and why ozone is present in the earth s stratosphere. [Pg.159]

An important effect of air pollution on the atmosphere is change in spectral transmission. The spectral regions of greatest concern are the ultraviolet and the visible. Changes in ultraviolet radiation have demonstrable adverse effects e.g., a decrease in the stratospheric ozone layer permits harmful UV radiation to penetrate to the surface of the earth. Excessive exposure to UV radiation results in increases in skin cancer and cataracts. The worldwide effort to reduce the release of stratospheric ozone-depleting chemicals such as chlorofluorocarbons is directed toward reducing this increased risk of skin cancer and cataracts for future generations. [Pg.375]

OZONE LAYER A thin layer of ozone that lies about 25 kilometres above the earth in the stratosphere. Forms a protective screen against harmful radiation by filtering out ultra-violet rays from the sun. [Pg.16]

F. S. Rowland and M. Molina showed that man-made chlorofluorocarbons, CFCs, could catalytically destroy ozone in the stratosphere (Nobel Prize for Chemistry, with P. Crutzen, 1995). [Pg.601]

Despite their instability (or perhaps because of it) the oxides of chlorine have been much studied and some (such as CI2O and particularly CIO2) find extensive industrial use. They have also assumed considerable importance in studies of the upper atmosphere because of the vulnerability of ozone in the stratosphere to destruction by the photolysis products of chlorofluorocarbons (p. 848). The compounds to be discussed are ... [Pg.844]

Ozone has received increased attention for its occurrence and function in the Earth s atmosphere.For example the decreasing ozone concentration in the stratospheric ozone layer, becoming most obvious with the Antarctic ozone hole. [Pg.219]

About 51 percent of solar energy incident at the top of the atmosphere reaches Earth s surface. Energetic solar ultraviolet radiation affects the chemistry of the atmosphere, especially the stratosphere where, through a series of photochemical reactions, it is responsible for the creation of ozone (O,). Ozone in the stratosphere absorbs most of the short-wave solar ultraviolet (UV) radiation, and some long-wave infrared radiation. Water vapor and carbon dioxide in the troposphere also absorb infrared radiation. [Pg.86]


See other pages where In the stratosphere is mentioned: [Pg.367]    [Pg.287]    [Pg.495]    [Pg.495]    [Pg.495]    [Pg.500]    [Pg.312]    [Pg.320]    [Pg.321]    [Pg.505]    [Pg.236]    [Pg.386]    [Pg.387]    [Pg.13]    [Pg.51]    [Pg.82]    [Pg.38]    [Pg.160]    [Pg.162]    [Pg.13]    [Pg.409]    [Pg.85]    [Pg.86]    [Pg.86]    [Pg.243]    [Pg.311]   
See also in sourсe #XX -- [ Pg.164 ]




SEARCH



Stratosphere

Stratospheric

© 2024 chempedia.info