Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Imperfections, electronic lattice

After some typical time, r, the electron will scatter off a lattice imperfection. This imperfection might be a lattice vibration or an impurity atom. If one assumes that no memory of the event resides after the scattering... [Pg.128]

Various types of intermediate behaviour embodying features of more than one of these effects can be visualized. In addition to the considerations (i)—(iii) above, the interface may behave as a source or sink for the creation and/or annihilation of imperfections such as lattice defects and electrons, which can be important participants in the overall change (for clarity, such effects have not been included in Fig. 8). The decomposition characteristics of many solids are influenced by externally supplied energy such as irradiation, cold working, etc. [Pg.113]

Characteristically, the mechanisms formulated for azide decompositions involve [693,717] exciton formation and/or the participation of mobile electrons, positive holes and interstitial ions. Information concerning the energy requirements for the production, mobility and other relevant properties of these lattice imperfections can often be obtained from spectral data and electrical measurements. The interpretation of decomposition kinetics has often been profitably considered with reference to rates of photolysis. Accordingly, proposed reaction mechanisms have included consideration of trapping, transportation and interactions between possible energetic participants, and the steps involved can be characterized in greater detail than has been found possible in the decompositions of most other types of solids. [Pg.165]

Surface charge at the phase boundary may be caused by lattice imperfections at the solid surface and by isomorphous replacements within the lattice. For example, if in any array of solid Si02 tetrahedra an Si atom is replaced by an Al atom (Al has one electron less than Si), a negatively charged framework is established ... [Pg.44]

If the temperature of one insulator is raised (as by rubbing), electrons may be transferred to the conduction band or the band levels may be altered to an extent that would permit appropriate electron flow. The presence of surface states may also alter the general picture. Such states, acting as additional levels within the forbidden band for trapping electrons, may originate in various ways, including imperfections of the lattice structure at the surface and the presence of other adsorbed atoms. [Pg.62]

An elementary treatment of the free-electron motion (see, e.g., Kittel, 1962, pp. 107-109) shows that the damping constant is related to the average time t between collisions by y = 1 /t. Collision times may be determined by impurities and imperfections at low temperatures but at ordinary temperatures are usually dominated by interaction of the electrons with lattice vibrations electron-phonon scattering. For most metals at room temperature y is much less than oip. Plasma frequencies of metals are in the visible and ultraviolet hu>p ranges from about 3 to 20 eV. Therefore, a good approximation to the Drude dielectric functions at visible and ultraviolet frequencies is... [Pg.254]

An expression for the electrical conductivity of a metal can be derived in terms of the free-electron theory. When an electric field E is applied, the free carriers in a solid are accelerated but the acceleration is interrupted because of scattering by lattice vibrations (phonons) and other imperfections. The net result is that the charge carriers acquire a drift velocity given by... [Pg.302]

Gray and Waddington [57,120] examined the physico-chemical properties of silver azide and state that its melting point is 300°C. On the basis of the latest opinion that the explosive decomposition of azides results from processes involving ions and electrons caused by imperfection and deficiencies in the crystal lattice (Jacobs and Tompkins [22]), the authors incorporated silver cyanide, Ag2(CN)2,... [Pg.183]

In most semiconductors, there are, in addition to the allowed energy levels for electrons in the conduction and filled bands of the ideal crystal, discrete levels with energies in the forbidden gap which correspond to electrons localized at impurity atoms or imperfections. In zinc oxide, such levels arise when there are excess zinc atoms located interstitially in the lattice. At very low temperatures the interstitial zinc is in the form of neutral atoms. However, the ionization energy of the interstitial atoms in the crystal is small and at room temperature most are singly ionized, their electrons being thermally excited into the conduction band. These electrons give rise to the observed A-type conductivity. [Pg.261]

Electron donors and acceptors for reversible redox systems must invariably exhibit at least two stable oxidation states, or the net result will be an irreversible chemical reaction. The donor or acceptor components of the redox system need not be confined to independent atoms, ions, or molecules but could even be imperfections in crystal lattices capable of functioning as electron traps. The well-known color centers in alkali halides are just such acceptor systems. [Pg.294]

The electronic properties of RGS have been under investigation since seventies [3-7] and now the overall picture of creation and trapping of electronic excitations is basically complete. Because of strong interaction with phonons the excitons and holes in RGS are self-trapped, and a wide range of electronic excitations are created in samples free excitons (FE), atomic-like (A-STE) and molecular-like self-trapped excitons (M-STE), molecular-like self-trapped holes (STH) and electrons trapped at lattice imperfections. The coexistence of free and trapped excitations and, as a result, the presence of a wide range of luminescence bands in the emission spectra enable one to reveal the energy relaxation channels and to detect the elementary steps in lattice rearrangement. [Pg.46]


See other pages where Imperfections, electronic lattice is mentioned: [Pg.545]    [Pg.246]    [Pg.192]    [Pg.545]    [Pg.338]    [Pg.322]    [Pg.2219]    [Pg.127]    [Pg.1232]    [Pg.146]    [Pg.240]    [Pg.183]    [Pg.334]    [Pg.128]    [Pg.217]    [Pg.43]    [Pg.82]    [Pg.346]    [Pg.251]    [Pg.255]    [Pg.216]    [Pg.46]    [Pg.185]    [Pg.117]    [Pg.26]    [Pg.234]    [Pg.85]    [Pg.377]    [Pg.203]    [Pg.444]    [Pg.1612]    [Pg.202]    [Pg.93]    [Pg.154]    [Pg.36]    [Pg.5]    [Pg.172]    [Pg.165]    [Pg.298]   
See also in sourсe #XX -- [ Pg.104 ]




SEARCH



Imperfections, electronic

© 2024 chempedia.info