Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Surface-immobilized catalyst

Clarke and Shannon also supported copper bis(oxazoline) complexes onto the surfaces of inorganic mesoporous materials, such as MCM-41 and MCM-48, through the covalent binding of the ligand, modified by alkoxysilane functionalities [59]. The immobilized catalysts allowed the cyclopropanation of styrene with ethyldiazoacetate to be performed as for the corresponding homogeneous case, and were reused once with almost no loss of activity or selectivity. [Pg.112]

Fig. 1. shows the P MAS NMR chemical shifts for the immobilized and homogeneous catalyst. The chemical shifts at the -15.2 and -13.7 ppm correspond to PTA while the chemical shifts in the range from 20 and 40 ppm correspond to phosphine oxide. The chemical shifts at the 66 and 118 ppm seems to be those of BINAP ligand, which is confirmed by the spectrum of Ru-BINAP catalyst. This spectrum shows that PTA exist in large amount on the surface of immobilized catalyst and that BINAP ligand is intact after immobilization. [Pg.350]

Another way of immobilizing catalyst complexes might be to trap them in the pores of solid particles, for instance by synthesizing the complex inside the pores of a zeolite ( ship in a bottle ). Another method could be to trap catalyst complexes in porous materials and deposit a membrane at the outer. surface. These methods of immobilizing a homogeneous catalyst do not involve chemical linkage between the catalyst and the carrier. The fixation is the result of steric hindrance. [Pg.116]

BB-SFG, we have investigated CO adsorption on smooth polycrystaHine and singlecrystal electrodes that could be considered model surfaces to those apphed in fuel cell research and development. Representative data are shown in Fig. 12.16 the Pt nanoparticles were about 7 nm of Pt black, and were immobilized on a smooth Au disk. The electrolyte was CO-saturated 0.1 M H2SO4, and the potential was scanned from 0.19 V up to 0.64 V at 1 mV/s. The BB-SFG spectra (Fig. 12.16a) at about 2085 cm at 0.19 V correspond to atop CO [Arenz et al., 2005], with a Stark tuning slope of about 24 cm / V (Fig. 12.16b). Note that the Stark slope is lower than that obtained with Pt(l 11) (Fig. 12.9), for reasons to be further investigated. The shoulder near 2120 cm is associated with CO adsorbed on the Au sites [Bhzanac et al., 2004], and the broad background (seen clearly at 0.64 V) is from nomesonant SFG. The data shown in Figs. 12.4, 12.1 la, and 12.16 represent a hnk between smooth and nanostructure catalyst surfaces, and will be of use in our further studies of fuel cell catalysts in the BB-SFG IR perspective. [Pg.396]

The patterned amine materials have been used to construct CGC-inspired sites that were evaluated in the catalytic polymerization of ethylene after activation with MAO. The complexes assembled on a porous silica surface using this methodology are more active than previously reported materials prepared on densely-loaded amine surfaces. This increased activity further suggests the isolated, unique nature of the metal centers. Work is continuing in our laboratory to further characterize the nature of the active sites, as well as to obtain more detailed kinetic data on the catalysts. The patterning methodology is also being applied to the creation of immobilized catalysts for small molecule reactions, such as Heck and Suzuki catalysis. [Pg.277]

Immobilization of chiral complexes in PDMS membranes offers a method for the generation of new chiral catalytic membranes. The heterogenization of the Jacobsen catalyst is difficult because the catalyst loses its enantioselectivity during immobilization on silica or carbon surfaces whereas the encapsulation in zeolites needs large cages. However, the occlusion of this complex in a PDMS matrix was successful.212 The complex is held sterically within the PDMS chains. The Jacobsen catalyst occluded in the membrane has activity and selectivity for the epoxidation of alkenes similar to that of the homogeneous one, but the immobilized catalyst is recyclable and stable. [Pg.265]

Since many metallic catalysts have high adsorption affinities, we often find that certain poison molecules are adsorbed in an immobile form after only a very few collisions with the catalyst surface. In this situation, the outer periphery of the catalyst particle will be completely poisoned while the inner shell will be completely free of poison. The thickness of the poisoned shell grows with prolonged exposure to poison molecules until the pellet is completely deactivated. During the poisoning process, the boundary between active and deactivated regions is relatively sharp. [Pg.466]

Amorphous Systems (Polymer and Surface Immobilized Catalysts and Inorganic Glasses)... [Pg.393]

In periphery-functionalized dendritic catalysts, the functional groups at the surface determine the solubility and miscibility and thus the precipitation properties. Many dendrimers functionalized with organometallic complexes do not dissolve in apolar solvents, and the presence of multiple metal centers at the periphery facilitates precipitation upon addition of this type of solvent. It is emphasized that the use of dendrimer-immobilized catalysts with the goal of recovery through precipitation is worthwhile only if the tendency to precipitation of the dendritic system exceeds that of its non-dendritic equivalent. [Pg.100]

Catalyst-supporting materials are used to immobilize catalysts and to eliminate separation processes. The reasons to use a catalyst support include (1) to increase the surface area of the catalyst so the reactant can contact the active species easily due to a higher per unit mass of active ingredients (2) to stabilize the catalyst against agglomeration and coalescence (fuse or unite), usually referred to as a thermal stabilization (3) to decrease the density of the catalyst and (4) to eliminate the separation of catalysts from products. Catalyst-supporting materials are frequently porous, which means that most of the active catalysts are located inside the physical boundary of the catalyst particles. These materials include granular, powder, colloidal, coprecipitated, extruded, pelleted, and spherical materials. Three solids widely used as catalyst supports are activated carbon, silica gel, and alumina ... [Pg.130]

One of the most fruitful trends in the comprehension and control of electrochemical reaction kinetics and electrocatalysis has been the development of modified electrodes to achieve redox mediators of solution processes. This strategy is based on the electrochemical activation (through the application of an electrical perturbation to the electrode) of different sites at a modified surface. As a result of this activation, the oxidation or the reduction of other species located in the solution adjacent to the electrode surface (which does not occur or occurs very slowly in the absence of the immobilized catalyst) can take place4 [40, 69, 70]. [Pg.448]

Immobilized catalyst was obtained by impregnating 1.58 g of neutral active aluminum oxide shaped as spheres 1.5 mm in diameter (with specific surface over 500m2/g) with iron(III) perfhiorotetraphenylporphyrin solution. Then the applied catalyst with 30 mg/g active... [Pg.254]

Heterogeneous catalysis is a surface phenomenon, therefore the overall kinetic parameters are dependent on the real exposed catalyst surface area. In the supported systems only a part of the photocatalyst is accessible to light and to substrate. Besides, the immobilized catalyst suffers from the surface deactivation since the support could enhance the recombination of photogenerated electron-hole pairs and a limitation of oxygen diffusion in the deeper layers is observed. [Pg.347]


See other pages where Surface-immobilized catalyst is mentioned: [Pg.94]    [Pg.164]    [Pg.396]    [Pg.1427]    [Pg.1442]    [Pg.1462]    [Pg.124]    [Pg.475]    [Pg.442]    [Pg.266]    [Pg.422]    [Pg.24]    [Pg.205]    [Pg.207]    [Pg.267]    [Pg.274]    [Pg.399]    [Pg.463]    [Pg.167]    [Pg.185]    [Pg.206]    [Pg.383]    [Pg.383]    [Pg.91]    [Pg.92]    [Pg.448]    [Pg.235]    [Pg.327]    [Pg.67]    [Pg.171]    [Pg.99]    [Pg.361]    [Pg.67]    [Pg.457]   


SEARCH



Catalyst immobilization

Immobilization of Homogeneous Hydroformylation Catalysts on Solid Surfaces by Covalent Anchoring

Immobilized catalysts

Surface catalysts

Surface immobilization

Surface, immobile

© 2024 chempedia.info