Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Imines, alkylation enamines

The formation of bicyclic imines (263,264) from piperidine enamines and y-bromopropyl amines may appear at first sight to be a simple extension of the reactions of enamines with alkyl halides. However, evidence has been found that the products are formed by an initial enamine exchange, followed by an intramolecular enamine alkylation. Thus y-bromodiethylamino-propane does not react with piperidinocyclohexene under conditions suitable for the corresponding primary amine. Furthermore, the enamine of cyclopentanone, but not that of cyclohexanone, requires a secondary rather than primary y-bromopropylamine, presumably because of the less favorable imine to enamine conversion in this instance. [Pg.351]

TiCl4 also effectively promotes formation of imines and enamines from carbonyl compounds (Scheme 31). The combination of imine formation using TiCl4 and reduction leads to reductive alkylation of an amine moiety.113,114... [Pg.412]

Table 34.4 Selected results for the enantioselective hydrogenation of N-alkyl imines and enamines (for structures, see Fig. 34.7) Catalytic system, reaction conditions, enantioselectivity, productivity and activity. Table 34.4 Selected results for the enantioselective hydrogenation of N-alkyl imines and enamines (for structures, see Fig. 34.7) Catalytic system, reaction conditions, enantioselectivity, productivity and activity.
The Zr-catalyzed asymmetric alkylation shown in Eq. (2) [8] illustrates two important principles (1) The catalytic asymmetric protocol can be readily applied to the synthesis of non-aryl imines to generate homochiral amines that cannot be prepared by any of the alternative imine or enamine hydrogenation protocols. (2) The catalytic amine synthesis involves a three-component process that includes the in situ formation of the imine substrate, followed by its asymmetric alkylation. This strategy can also be readily applied to the preparation of arylamines. The three-component enantioselective amine synthesis suggests that such a procedure maybe used to synthesize libraries of homochiral amines in a highly efficient and convenient fashion. [Pg.174]

D. E. Bergbreiter and M. Newcombe (1983). Alkylation of imine and enamine salts , in Asymmetric Synthesis, Ed. J. D. Morrison. Orlando, Florida Academic Press. Vol. 2A, p. 243 D. Enders (1984). Alkylation of chiral hydrazones , in Asymmetric Synthesis. Ed. J. D. Morrison. Orlando, Florida Academic Press, Vol. 3, p. 275. [Pg.819]

The reaction of enamines and imines with acrylamide results in aza-annulation120,121. Other electrophilic alkenes which have been used to alkylate enamines and the products used in hetero- or carbocyclic synthesis include ethyl / -nitroacrylate122, where reaction occurs beta to the nitro not the ester group, 2-(phenylseleno)prop-2-enenitrile [CH2 = C(SePh)CN]123,124, phenyl a-phenylselenovinyl sulphone [CH2 = C(SePh)-S02Ph]124 and phenyl a-bromovinyl sulphone124. An electrophilic allene, phenylsulpho-nylpropadiene, has also been used to alkylate enamines125 (Scheme 44). [Pg.760]

A. 15.1.2.2 Imines and Enamines. Primary amines react with aldehydes and ketones to form the corresponding A-alkyl- or A-aryl-substituted imines (R— CO—R + R"—NH2 R—C=(NR")—R + H2O). Imine formation is a... [Pg.729]

Reductive alkylation of amines proceeds by the hydrogenation of the imine or enamine formed, in situ, by the condensation of the amine with a carbonyl compound. This reaction can give a mixture of products if the amine produced initially competes with the reactant amine in the carbonyl condensation step. The proper selection of reagent concentrations avoids this difficulty and leads to the formation of good yields of the desired product. 50 jhe use of a large excess of ammonia gives the primary amine as the predominant product (Eqn. 19.50). 51 An excess of a primary amine as the reactant leads to the preferential formation of the secondary amine product. An excess of the carbonyl compound gives the symmetrical secondary or tertiary amines (Eqn. 19.51). 50... [Pg.499]

The structure of the amine acrylates used in this study after curing is likely to be very complex and this makes it difficult, if not impossible, to evaluate clearly the nature and mechanism of the photooxidation and photoyellowing observed in these systems. The infra-red data clearly indicates the loss of amine alkyl functionality resulting in amine or amide formation. The carbonyl absorption reported previously (14,15) at 1680 cm indicates the latter. The band situated at 1612 cm l, also reported previously (14,15), may be due to imine, enamine, vinyl ether, amine or an, -unsaturated carbonyl species. If it was due to imine or enamine it would be easy to explain its loss due to hydrolysis during irradiation. [Pg.359]

Intermolecular and intramolecular HAMs are known. The transformation can be considered as a tandem reaction [2,3] consisting of three consecutive steps (i) hydroformylation, (ii) formation of an imine or an enamine, and (iii) reduction. Finally, the Af-alkylated amine is produced [4]. Clearly, these reactions can also be carried out in separate steps, but the application of uniform reaction conditions offers considerable advantages, such as the use of a single catalyst for the hydroformylation and the hydrogenation steps. Moreover, the equihbrium of the formation of the intermediate imine or enamine can be advantageously shifted by the irreversible hydrogenation in the last step [5]. [Pg.465]

The SAMP/RAMP Method As early as 1976, azaenolates derived from A,A-dialkyl hydrazones were studied as an alternative to direct ketone and aldehyde enolate alkylations. These species were found to exhibit higher reactivity toward electrophiles, as well as better regioselectivity for C-alkylation than their parent carbonyl compounds. A,A-diaIkyl hydrazones are stable and are relatively easy to prepare, making them appealing from a practical point of view in comparison with imines and enamines, which can be difficult to form quantitatively and are hydrolytically unstable. Given these desirable attributes, Enders undertook the development of chiral nonrace-mic A,A-diaIkyl hydrazine auxiliaries for the asymmetric a-alkylation of ketones. The result of his efforts were (5)-and (R)-l-amino-2-methoxypyrrohdine hydrazine (1 and 2, respectively), now commonly known as the SAMP and RAMP auxiliaries, respectively (Figure 7.1). Over the years, the SAMP/RAMP method has come to be considered the state-of-the-art approach to asymmetric ketone... [Pg.184]

Figure 5.6 Imines and enamines from which logk for R = alkyl and Ph may be deduced. Figure 5.6 Imines and enamines from which logk for R = alkyl and Ph may be deduced.
Reductive amination of cyclohexanone using primary and secondary aHphatic amines provides A/-alkylated cyclohexylamines. Dehydration to imine for the primary amines, to endocycHc enamine for the secondary amines is usually performed in situ prior to hydrogenation in batch processing. Alternatively, reduction of the /V-a1ky1ani1ines may be performed, as for /V,/V-dimethy1 cyclohexyl amine from /V, /V- di m e th y1 a n i1 i n e [121 -69-7] (12,13). One-step routes from phenol and the alkylamine (14) have also been practiced. [Pg.208]

Experimental evidence, obtained in protonation (3,6), acylation (1,4), and alkylation (1,4,7-9) reactions, always indicates a concurrence between electrophilic attack on the nitrogen atom and the -carbon atom in the enamine. Concerning the nucleophilic reactivity of the j3-carbon atom in enamines, Opitz and Griesinger (10) observed, in a study of salt formation, the following series of reactivities of the amine and carbonyl components pyrrolidine and hexamethylene imine s> piperidine > morpholine > cthyl-butylamine cyclopentanone s> cycloheptanone cyclooctanone > cyclohexanone monosubstituted acetaldehyde > disubstituted acetaldehyde. [Pg.102]

A related enamine alkylation is seen in the rearrangement of an ethylene imine vinylogous amide, which was heated with sodium iodide in diglyme. The presumed internal enamine alkylation constitutes a critical step in an oxocrinane synthesis (265). Use of an ethylene imine urethane for alkylation of an enamine and formation of the hexahydroindole system has also been reported (266). [Pg.351]

When enamines are treated with alkyl halides, an alkylation occurs that is analogous to the first step of 12-14. Hydrolysis of the imine salt gives a ketone. Since the enamine is normally formed from a ketone (16-12), the net result is alkylation of the ketone at the a position. The method, known as the Stork enamine reaction is an alternative to the ketone alkylation considered at 10-105. The Stork method has the advantage that it generally leads almost exclusively to monoalkylation of the ketone, while 10-105, when applied to ketones, is difficult to stop with the introduction of just one alkyl group. Alkylation usually takes place on the less substituted side of the original ketone. The most commonly used amines are the cyclic amines piperidine, morpholine, and pyrrolidine. [Pg.787]

Primary and secondary halides do not perform well, mostly because N-alkylation becomes important, particularly with enamines derived from aldehydes. An alternative method, which gives good yields of alkylation with primary and secondary halides, is alkylation of enamine salts, which are prepared by treating an imine with ethylmagnesium bromide in THF ... [Pg.788]

The imines are prepared by 16-12. The enamine salt method has also been used to give good yields of mono a alkylation of a,P-unsaturated ketones. Enamines prepared from aldehydes and butylisobutylamine can be alkylated by simple primary alkyl halides in good yields. N-alkylation in this case is presumably prevented by steric hindrance. [Pg.788]

Just as enamines are more nucleophilic than enol ethers, imine anions are more nucleophilic than enolates and react efficiently with alkyl halides. One application of imine anions is for the alkylation of aldehydes. [Pg.49]

Reactions of Halogenation and Nitrosation Nitrones with protons in the a-alkyl group can occur in tautomeric nitrone-hydroxylamine equilibrium (Scheme 2.117) similar to keto-enol and imine-enamine tautomerisms. [Pg.227]


See other pages where Imines, alkylation enamines is mentioned: [Pg.201]    [Pg.584]    [Pg.154]    [Pg.858]    [Pg.1508]    [Pg.31]    [Pg.858]    [Pg.1508]    [Pg.403]    [Pg.201]    [Pg.291]    [Pg.92]    [Pg.25]    [Pg.80]    [Pg.80]    [Pg.982]    [Pg.788]    [Pg.1]    [Pg.69]    [Pg.101]    [Pg.87]   
See also in sourсe #XX -- [ Pg.4 , Pg.233 ]




SEARCH



Alkyl imines

Alkylation enamines

Imine alkylations

Imines alkylation

Imines enamines

© 2024 chempedia.info