Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Imidization, intramolecular

An ingenious synthesis of 1-arylisoindolcs has been developed by Vebor and Lwowski, based upon the reaction of an o-phthalimido-methylbenzophenone (41, R = aryl) with hydrazine (Table IV). The benzophenone is prepared by a Friedel-Crafts reaction with o-phthalimidomethylbenzoyl chloride (40). The mechanism of isoindole formation can be represented sehematically by a sequence involving attack by hydrazine at the imide to give the ring-opened hj drazide (42), followed by cyclization to phthalazine-l,4-dione (44) with displacement of the o-aminomethylbenzophenone (43). Intramolecular condensation of the latter can lead, via the isoindolenine... [Pg.123]

Reaction of anthanilic acid 112 with acid anhydrides afforded the corresponding imide derivatives 113. Subjecting 113 to intramolecular Wittig cyclization has been achieved by treatment with A-phenyl(triphe-nylphosphoranylidene)etheneimine in toluene or dioxane whereby the corresponding pyrroloquinolines 116 were obtained (94TL9229). The intermediate 115 resulting from the rearrangement of 114 could be isolated when the reaction was done at room temperature (Scheme 22). [Pg.88]

The Parham cyclization of the iodinated imide 270 by BuLi in dry THF at —78°C afforded 1 lZ -hydroxy-l,3,4,6,7,l lZ -hexahydro[l,4]oxazine[3,4-a]iso-quinolin-4-one 258 (97JOC2080). Iodide-lithium exchange was faster then addition to the carbonyl group of imide 270 and intramolecular cyclization of the initially formed anion gave compound 258. [Pg.281]

An unusual difluoroboryl imidate (10) was isolated during decomposition of (9) and its stability arose from a strong intramolecular bond between the pyridine N and boron. Formation of the desired 2-amino-5-fluoropyridine followed by the use of aqueous sodium hydroxide (89S905). [Pg.5]

Entry 6 is analogous to a silyl ketene acetal rearrangement. The reactant in this case is an imide. Entry 7 is an example of PdCl2-catalyzed imidate rearrangement. Entry 8 is an example of an azonia-Cope rearrangement, with the monocylic intermediate then undergoing an intramolecular Mannich condensation. (See Section 2.2.1 for a discussion of the Mannich reaction). Entry 9 shows a thioimidate rearrangement. [Pg.579]

A-Acyliminium ions, which are even more reactive toward allylic and alkenyl-silanes, are usually obtained from imides by partial reduction (see Section 2.2.2). The partially reduced A-acylcarbinolamines can then generate acyliminium ions. Such reactions have been employed in intramolecular situations with both allylic and vinyl silanes. [Pg.826]

Simple criss-cross cycloadditions described so far are in fact limited to aromatic aldazines and cyclic or fluorinated ketazines. Other examples are rather rare, including the products of intramolecular criss-cross cycloaddition. The criss-cross cycloadditions of hexafluoroacetone azine are probably the best studied reaction of this type. It has been observed that with azomethine imides 291 derived from hexafluoroacetone azine 290 and C(5)-C(7) cycloalkenes < 1975J(P 1)1902, 1979T389>, a rearrangement to 177-3-pyrazolines 292 competes with the criss-cross adduct 293 formation (Scheme 39). [Pg.409]

In 1975, van der Baan and Bickelhaupt reported the synthesis of imide 37 from pyridone 34 as an approach to the hetisine alkaloids, using an intramolecular alkylation as the key step (Scheme 1.3) [23]. Beginning with pyridone 34, alkylation with sodium hydride/allyl bromide followed by a thermal [3,3] Claisen rearrangement gave alkene 35. Next, formation of the bromohydrin with A -bi omosuccinimide and subsequent protection of the resulting alcohol as the tetrahydropyranyl (THP) ether produced bromide 36, which was then cyclized in an intramolecular fashion to give tricylic 37. [Pg.6]

Mejla-Oneto and Padwa have explored intramolecular [3+2] cycloaddition reactions of push-pull dipoles across heteroaromatic jr-systems induced by microwave irradiation [465]. The push-pull dipoles were generated from the rhodium(II)-cata-lyzed reaction of a diazo imide precursor containing a tethered heteroaromatic ring. In the example shown in Scheme 6.276, microwave heating of a solution of the diazo imide precursor in dry benzene in the presence of a catalytic amount of rhodium I) pivalate and 4 A molecular sieves for 2 h at 70 °C produced a transient cyclic carbonyl ylide dipole, which spontaneously underwent cydoaddition across the tethered benzofuran Jt-system to form a pentacyclic structure related to alkaloids of the vindoline type. [Pg.278]

Imides 496) (4.82) and esters 497) (4.83) can also form oxetanes in inter- and intramolecular reactions. [Pg.68]

Aminopyrazoles 257 substituted at the C-4 and C-5 positions react with a variety of imidate hydrochlorides giving iV-hydroxyamidines 258, that after tosylation and intramolecular cyclization afford the corresponding pyrazolo[ 1,5-4 )-[l,2,4]triazole derivatives 259 (Scheme 21) <1998CPB287, 1998CPB69>. [Pg.247]

Asymmetric Diels-Alder reactions. Unlike methyl crotonate, which is a weak dienophile, chiral (E)-crotonyl oxazolidinones when activated by a dialkylaluminum chloride (1 equiv.) are highly reactive and diastereoselective dienophiles. For this purpose, the unsaturated imides formed from oxazolidinones (Xp) derived from (S)-phenylalanol show consistently higher diastereoselectivity than those derived from (S)-valinol or (IS, 2R)-norephedrine. The effect of the phenyl group is attributed in part at least to an electronic interaction of the aromatic ring. The reactions of the unsaturated imide 1 shown in equation (I) are typical of reactions of unsaturated N-acyloxazolidinones with cyclic and acyclic dienes. All the Diels-Alder reactions show almost complete endo-selectivity and high diastereoselectivity. Oxazolidinones are useful chiral auxiliaries for intramolecular Diels-Alder... [Pg.244]

Intermolecular and Intramolecular Reactions of Substituted Norbomenyl Imides... [Pg.53]

Corey s retrosynthetic concept (Scheme 9) is based on two key transformations a cationic cyclization and an intramolecular Diels-Alder (IMDA) reaction. Thus, cationic cychzation of diene 50 would give a precursor 49 for epf-pseudo-pteroxazole (48), which could be converted into 49 via nitration and oxazole formation. Compound 50 would be obtained by deamination of compound 51 and subsequent Wittig chain elongation. A stereocontroUed IMDA reaction of quinone imide 52 would dehver the decaline core of 51. IMDA precursor 52 should be accessible by amide couphng of diene acid 54 and aminophenol 53 followed by oxidative generation of the quinone imide 52 [28]. [Pg.21]

Also alkynylcarbene complexes can react as Michael acceptors with nucleophiles, forming 1,3-dien-l-ylcarbene complexes (Figure 2.17). Both carbon nucleophiles, such as, e.g., enamines [246-249], and non-carbon nucleophiles, such as imidates [250], amines [64,131,251], aliphatic alcohols [48,79,252], phenols [252], and thiols [252] can add to the C-C triple bond of alkynylcarbene complexes. Further reactions of the C-C triple bond of alkynylcarbene complexes include 1,3-dipolar [253,254], Diels-Alder [64,234,238,255-258] and [2 -i- 2] cycloadditions [259 -261], intramolecular Pauson-Khand reactions [43,262], and C-metallation of ethynylcarbene complexes [263]. [Pg.36]

The photochemistry of imides, especially of the N-substituted phthalimides, has been studied intensively by several research groups during the last two decades [233-235]. It has been shown that the determining step in inter- and intramolecular photoreactions of phthalimides with various electron donors is the electron transfer process. In terms of a rapid proton transfer from the intermediate radical cation to the phthalimide moieties the photocyclization can also be rationalized via a charge transfer complex in the excited state. [Pg.117]

Crossover experiments have been used to establish that the novel N to C acyl migration reaction of acyclic imides (69), to give o -amino ketones (70), proceeds by intramolecular reaction of the base-generated carbanion. ... [Pg.364]

The formation of tluorinated Q -hydroxy-jS-imino esters (180) by treatment of fluorinated imino ethers (179) with lithium 2,2,6,6-tetramethylpiperidide has been reported. A possible explanation for this interesting intramolecular rearrangement is proposed in Scheme 64. Acyclic imides derived from primary benzylic amines and amino acid esters have been found to undergo a novel nitrogen to carbon acyl migration via a base-generated carbanion to yield the corresponding a-amino... [Pg.546]

The secondary amide can also attack intramolecularly an additional ester function to form a cyclic imide, although only in moderate yields [67], Finally, the palladium-catalysed intramolecular reaction with an alkyne, resulting in a hydro-amination of the latter, will be described later (Fig. 17) [68]. [Pg.10]


See other pages where Imidization, intramolecular is mentioned: [Pg.401]    [Pg.401]    [Pg.261]    [Pg.400]    [Pg.204]    [Pg.188]    [Pg.306]    [Pg.270]    [Pg.1070]    [Pg.497]    [Pg.36]    [Pg.699]    [Pg.899]    [Pg.57]    [Pg.591]    [Pg.469]    [Pg.77]    [Pg.304]    [Pg.174]    [Pg.36]    [Pg.160]    [Pg.934]    [Pg.882]    [Pg.543]    [Pg.596]    [Pg.52]    [Pg.138]    [Pg.436]    [Pg.1552]    [Pg.343]   
See also in sourсe #XX -- [ Pg.63 , Pg.96 ]




SEARCH



© 2024 chempedia.info