Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ideal solubility chapter

Gel electrophoresis is widely used in the routine analysis and separation of many well-known biopolymers such as proteins or nucleic acids. Little has been reported concerning the use of this methodology for the analysis of synthetic polymers, undoubtedly since in many cases these polymers are not soluble in aqueous solution - a medium normally used for electrophoresis. Even for those water-soluble synthetic polymers, the broad molecular weight dispersities usually associated with traditional polymers generally preclude the use of electrophoretic methods. Dendrimers, however, especially those constructed using semi-controlled or controlled structure synthesis (Chapters 8 and 9), possess narrow molecular weight distribution and those that are sufficiently water solubile, usually are ideal analytes for electrophoretic methods. More specifically, poly(amidoamine) (PAMAM) and related dendrimers have been proven amendable to gel electrophoresis, as will be discussed in this chapter. [Pg.239]

The consequence of incomplete phase separation in a biphasic catalysed reaction results in contamination of the product phase by some of the catalyst immobilization solvent, as well as the catalyst. In the worst possible case, a distillation process is still required to purify the product. In addition, with some of the catalyst lost from the immobilization phase (the catalyst is often expensive and toxic) the system is less active when a second batch of the substrate is introduced. The best way to minimize (or ideally eliminate) catalyst loss is to design a catalyst that is considerably more soluble in the immobilization phase compared to the product phase. This is usually done by attaching groups to the catalyst that provide the desired solubility properties for the immobilization solvent and many examples of these modified ligands are given in the following chapters. [Pg.43]

In the ideal biphasic hydrogenation process, the substrate will be more soluble or partially soluble in the immobilization solvent and the hydrogenation product will be insoluble as this facilitates both reaction and product separation. Mixing problems are sometimes encountered with biphasic processes and much work has been conducted to elucidate exactly where catalysis takes place (see Chapter 2). Clearly, if the substrates are soluble in the catalyst support phase, then mixing is not an issue. The hydrogenation of benzene to cyclohexane in tetrafluoroborate ionic liquids exploits the differing solubilities of the substrate and product. The solubility of benzene and cyclohexane has been measured in... [Pg.166]

In many cases the CALPHAD method is applied to systems where there is solubility between the various components which make up the system, whether it is in the solid, liquid or gaseous state. Such a system is called a solution, and the separate elements (i.e., Al, Fe...) and/or molecules (i.e., NaCl, CuS...) which make up the solution are defined as the components. The model description of solutions (or solution phases) is absolutely fundamental to the CALPHAD process and is dealt with in more detail in chapter S. The present chapter will discuss concepts such as ideal mixing energies, excess Gibbs energies, activities, etc. [Pg.61]

Another type of nonideal SEC behavior, which will not be covered in this chapter, is related to the use of mixed mobile phases (multiple solvents). Because solute-solvent interactions play a critical role in controlling the hydrodynamic volume of a macromolecule, the use of mixed mobile phases may lead to deviations from ideal behavior. Depending on the solubility parameter differences of the solvents and the solubility parameter of the packing, the mobile phase composition within the pores of the packing may be different from that in the interstitial volume. As a result, the hydrodynamic volume of the polymer may change when it enters the packing leading to unexpected elution results. Preferential solvation of the polymer in mixed solvent systems may also lead to deviations from ideal behavior (11). [Pg.31]

The aqueous solubility of a gaseous compound is commonly reported for 1 bar (or 1 atm = 1.013 bar) partial pressure of the pure compound. One of the few exceptions is the solubility of 02 which is generally given for equilibrium with the gas at 0.21 bar, since this value is appropriate for the earth s atmosphere at sea level. As discussed in Chapter 3, the partial pressure of a compound in the gas phase (ideal gas) at equilibrium above a liquid solution is identical to the fugacity of the compound in the solution (see Fig. 3.9d). Therefore equating fugacity expressions for a compound in both the gas phase and an equilibrated aqueous solution phase, we have ... [Pg.139]

If we calculated with the idealized co-operative model by the content of spectroscopic determined Op values the number Nei of H-bonded water molecules we would get — with different 1 molar salt solutions — the result of Fig. 11. The values Nei with salt additions depend strongly on the salt concentrations because of the disturbance of the big H-bonded system3At small concentrations the Nel-N0 numbers (7V0 association number in pure water) of structure-makers are in size of the order of Debye-Sack s or Azzam s calculations. They are of the same size of order as the secondary hydration numbers calculated by solubility measurements of organic substances in water (Chapter b) or as the hydration numbers of hydrophilic organic molecules (Chapter lld-e) or biopolymers (Chapter III). [Pg.132]

Metal-Hydroxides. Most heavy metals may precipitate via strong bases (e.g., NaOH and KOH) as metal-hydroxides [M(OH)n]. These precipitation reactions are described in Chapter 2. As noted, metal-hydroxide solubility exhibits U-shape behavior and ideally its lowest solubility point in the pH range allowed by law (e.g., pH 6-9) should be lower than the maximum contaminant level (MCL). However, not all heavy metal-hydroxides meet this condition. The data in Figure 12.1 show the various metal-hydroxide species in solution when in equilibrium with metal-hydroxide solid(s). In the case of Pb2+, its MCL is met in the pH range of 7.4-12, whereas the MCL of cadmium (Cd) the MCL is not met at any pH. Similar information is given by the solubility diagrams of Cu2+, Ni2+, Fe3+ and Al3+. [Pg.429]

To select the appropriate stationary phase, it is necessary to examine the reactants to determine how they differ. The selection of the stationary phase should exploit this difference. For example, do the reactants differ in size, charge, or solubility Examination of the modes of operation of the stationary phase materials presented in Chapter 2 reveals gel filtration to be ideal for... [Pg.65]

Pharmaceutical solutions might appear to be extremely simple systems, but it is in the solution state that degradation takes place most rapidly, and the solubilisation of poorly soluble compounds is often very difficult. It is ideal if a dmg can be formulated as a simple stable aqueous solution when required for injection, but resort to additives such as water-miscible solvents and surfactants, hydrotropes and cyclodextrins to increase the water solubility of the drug complicates the formulation. Here we deal with simple solutions. Some of the special problems related to peptide and protein solubility are discussed in Chapter 11. [Pg.140]


See other pages where Ideal solubility chapter is mentioned: [Pg.163]    [Pg.313]    [Pg.739]    [Pg.244]    [Pg.82]    [Pg.134]    [Pg.20]    [Pg.212]    [Pg.67]    [Pg.33]    [Pg.891]    [Pg.139]    [Pg.117]    [Pg.91]    [Pg.28]    [Pg.221]    [Pg.180]    [Pg.237]    [Pg.31]    [Pg.138]    [Pg.175]    [Pg.18]    [Pg.298]    [Pg.74]    [Pg.73]    [Pg.16]    [Pg.40]    [Pg.199]    [Pg.33]    [Pg.33]    [Pg.249]    [Pg.518]    [Pg.166]    [Pg.9]    [Pg.248]    [Pg.54]    [Pg.94]    [Pg.116]   
See also in sourсe #XX -- [ Pg.2 , Pg.52 ]




SEARCH



Ideal solubility

Solubility (chapter

© 2024 chempedia.info