Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hyperthermophilic archaeon

Very recently a new type of 7Fe Fd (Mr 12,000) has been purified from the hyperthermophilic archaeon Pyrobaculum islandicum 122). The protein has a C-terminal extension, as in A. vinelandii Fdl, but the overall sequence homology between these two Fds is low, and the... [Pg.10]

Childers SE, DR Lovley (2001) Differences in Ee(lll) rednction in the hyperthermophilic archaeon Pyrobacu-lum islandicum, versns mesophilic Fe(Ill)-redncing bacteria. FEMS Microbiol Lett 195 253-258. [Pg.80]

Mukund S, MWW Adams (1995) Glyceraldehyde-3-phosphate ferredoxin oxidoreductase, a novel tungsten-containing enzyme with a potential glycolytic role in the hyperthermophilic archaeon Pyrococcus furiosus. J Biol Chem 270 8389-8392. [Pg.85]

Roy R, S Mukund, GJ Schut, DM Dunn, R Weiss, MWW Adams (1999) Purification and molecular characterization of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus the third of a putative five-member tungstoenzyme family. J Bacteriol 181 1171-1180. [Pg.87]

Vadas A, HG Monbouquette, E Johnson, I Schroder (1999) Identification and characterization of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J Biol Chem 274 36715-36721. [Pg.89]

Albers, S.V., Jonuscheit, M., Dinkelaker, S. et al. (2006) Production of recombinant and tagged proteins in the hyperthermophilic archaeon Sulfolobus solfataricus. Applied and Environmental Microbiology, 72 (1), 102-111. [Pg.55]

Mueller, P, Egorova, K., Vorgias, C.E. et al. (2006) Cloning, overexpression, and characterization of a thermoactive nitrilase from the hyperthermophilic archaeon Pyrococcus abyssi. Protein Expression and Purification, 47, 672-668. [Pg.195]

Russell, R.J., J.M. Ferguson, D.W. Hough, MJ. Danson, and G.L. Taylor. 1997. The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyro-coccus furiosus at 1.9 A resolution. Biochemistry 36 9983-9994. [Pg.378]

Figure lO.lOA shows the reaction scheme of the system outlining the electron transfer pathway among the different components, namely the electron donor Tris, the semiconductor Ti02 and the sulfhydrogenase of the hyperthermophilic archaeon P. furtosus, a bifunctional enzyme catalysing either proton or sulfur species reduction. [Pg.234]

Rakhely, G., Zhou, Z. FI., Adams, M. W. and Kovacs, K. L. (1999) Biochemical and molecular characterization of the [NiEe] hydrogenase from the hyperthermophilic archaeon. Thermococcus litoralis. Eur. J. Biochem., 266, 1158-65. [Pg.273]

Some aspects of the proposed Rbr/Rbo oxidative stress defense system in D. vulgaris resemble those recently suggested for oxidative stress protection in the anaerobic hyperthermophilic archaeon Pyrococcus furiosus (Jenney et al. 1999). Pyrococcus furiosus contains an Nlr-like protein with superoxide reductase activity as well as an Rbr, the genes for which are tandemly located. The microorganismic segregation of SOD/catalase between aerobes and anaerobes appears to be less distinct than for Rbo/Rbr, which, as noted above, have so far been found only in air-sensitive microbes (Kirschvink et al. 2000). The latter segregation suggests that the Rbo/Rbr oxidative stress protection system is well suited to protection of anaerobic life in an aerobic world. [Pg.140]

Grabarse W, Vaupel M, Vorholt JA, et al. 1999. The crystal structure of methenyl-tetrahydromethanopterin cyclohydrolase from the hyperthermophilic archaeon Methanopyrus kandleri. Structure Fold Des 7 1257-68. [Pg.155]

Inui H, Ono K, Miyatake K, Nakano Y, Kitaoka S (1987) Purification and characterization of pyruvate NADP+ oxidoreductase in Euglena gracilis. J Biol Chem 262 9130-9135 Johnson D, Cascio M, Sawaya M, Gingery I, Schroder E (2006) Crystal structures of a tetrahedral open pore ferritin from the hyperthermophilic archaeon. Structure 13 637-648... [Pg.249]

T. Kawakami, R. Ohshima, T. ADP-dependent glucokinase/phosphofructo-kinase, a novel bifunctional enzyme from the hyperthermophilic archaeon Methanococcus jannaschii. J. Biol. Chem., Til, 12495-12498 (2002)... [Pg.225]

Ramon-Maiques, S. Marina, A. Uriarte, M. Fita, L Rubio, V. The 1.5 A resolution crystal structure of the carbamate kinase-like carbamoyl phosphate synthetase from the hyperthermophilic Archaeon pyrococcus furio-sus, bound to ADP, confirms that this thermostable enzyme is a carbamate kinase, and provides insight into substrate binding and stability in carbamate kinases. J. Mol. Biol., 299, 463-476 (2000)... [Pg.281]

Besides sponges and algae, enzymes were also isolated from marine organisms and microorganisms. For example, polymerases and proteases from marine Vibrio sp. [352], marine bacterium such as Alcaligenes faecalis [353], and from archaeons, such as the psychrophilic Cenarchaeum symbiosum [354], and the hyperthermophile archaeons Pyrococcus furiosus [355], Sulfolobus solfataricus [356], and Aeropyrum pernix [357] transferases from marine bacterium such as Vibrio vulnificus... [Pg.718]

Hashimoto, H., Nishioka, M., Fujiwara, S., Takagi, M., Imanaka, T., Inoue, T., and Kai, Y. (2001). Crystal structure of DNA polymerase from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. / Mol. Biol. 306, 469-477. [Pg.434]

Xavier, K. B., L. O. Martins, R. Peist, M. Kossmann, W. Boos, and H. Santos. 1996. High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis. Journal of Bacteriology 178 4773—4777. [Pg.342]

Cobucci-Ponzano, B., Mazzone, M., Rossi, M. and Moracci, M. (2005b) Probing the catalytically essential residues of the alpha-L-fucosidase from the hyperthermophilic archaeon Sulfolobus solfataricus. Biochemistry, 44, 6331-6342. [Pg.318]

Perugino, G., Falcicchio, P., Corsaro, M.M., Matsui, I., Parrilli, M., Rossi, M., and Moracci, M., (2006) Preparation of a glycosynthase from the P-glycosidase of the hyperthermophilic Archaeon Pyrococcus horikoshii. Biocat, Biotrans., 24, 23-29... [Pg.320]

Durbecq, V., Legrain, C., Roovers, M., Pierard, A., and Glansdorff, N. (1997). The carbamate kinase-like carbamoyl phosphate synthetase of the hyperthermophilic archaeon Pyrococcus fa nos us. a missing link in the evolution of carbamoyl phosphate biosynthesis. Proc. Natl. Acad. Sci. USA, 94, 12803-12808. [Pg.70]

Purcarea, C., Evans, D. R., and Herve, G. (1999). Channeling of carbamoyl phosphate to the pyrimidine and arginine biosynthetic pathways in the deep sea hyperthermophilic archaeon Pyrococcus abyssi. J. Biol. Chem., 274, 6122—6129. [Pg.74]

Imamura, H., Fushinobu, S., Yamamoto, M., Kumasaka, T., Wakagi, T., and Matsu-zawa, H. 2001. Reaction mechanism and crystal structure of 4-a-Glucanotransferase from a hyperthermophilic archaeon, Thermococcus litoralis. J. Appl. Glycosci., 48, 171-175. [Pg.531]

Tachibana, Y., Fujiwara, S., Takagi, M., and Imanaka, T. 1997. Cloning and expression of the 4-a-glucanotransferase gene from the hyperthermophilic archaeon Pyro-coccus sp. KOD1, and characterization of the enzyme. J. Ferment. Bioeng., 83, 540-548. [Pg.532]

Xavier, K. B., Peist, R., Kossmann, M., Boos, W., and Santos, H. 1999. Maltose metabolism in the hyperthermophilic archaeon Thermococcus litoralis Purification and characterization of key enzymes. J. Bacteriol, 181, 3358-3367. [Pg.533]

D Auria, S., Nucci, R., Rossi, M., Gryczynski, I., Gryczynski, Z., and Lakowicz, J. R. (1999) The (3-glycosidase from the hyperthermophilic archaeon Sulfolobus solfataricus enzyme activity and conformational dynamics at temperatures above 100°C, Biophys. Chem. 81, 23-31. [Pg.195]


See other pages where Hyperthermophilic archaeon is mentioned: [Pg.75]    [Pg.153]    [Pg.155]    [Pg.129]    [Pg.141]    [Pg.142]    [Pg.225]    [Pg.228]    [Pg.228]    [Pg.438]    [Pg.317]    [Pg.36]    [Pg.258]    [Pg.159]    [Pg.258]    [Pg.112]   
See also in sourсe #XX -- [ Pg.73 , Pg.79 ]




SEARCH



Hyperthermophile

Hyperthermophiles

© 2024 chempedia.info