Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Nonlinear hyperpolarizability

Polarizabilities and hyperpolarizabilities have been calculated with semi-empirical, ah initio, and DFT methods. The general conclusion from these studies is that a high level of theory is necessary to correctly predict nonlinear optical properties. [Pg.259]

There have been some attempts to compute nonlinear optical properties in solution. These studies have shown that very small variations in the solvent cavity can give very large deviations in the computed hyperpolarizability. The valence bond charge transfer (VB-CT) method created by Goddard and coworkers has had some success in reproducing solvent effect trends and polymer results (the VB-CT-S and VB-CTE forms, respectively). [Pg.259]

Frequency-dependent polarizability a and second hyperpolarizability y corresponding to various third-order nonlinear optical processes have been... [Pg.300]

Fig. 8. Examples of some of the donor-acceptor substituted TEEs prepared for the exploration of structure-property relationships in the second- and third-order nonlinear optical effects of fully two-dimensionally-conjugated chromophores. For all compounds, the second hyperpolarizability y [10 esu], measured by third harmonic generation experiments in CHCI3 solution at a laser frequency of either A = 1.9 or 2.1 (second value if shown) pm is given in parentheses. n.o. not obtained... Fig. 8. Examples of some of the donor-acceptor substituted TEEs prepared for the exploration of structure-property relationships in the second- and third-order nonlinear optical effects of fully two-dimensionally-conjugated chromophores. For all compounds, the second hyperpolarizability y [10 esu], measured by third harmonic generation experiments in CHCI3 solution at a laser frequency of either A = 1.9 or 2.1 (second value if shown) pm is given in parentheses. n.o. not obtained...
Acentricity greatly enhances the y-value (see 92 vs 91 and 90 or 101 vs 99 and 100, Fig. 8). Such a trend had been predicted for certain ranges of compounds by theory [137] however when the first hyperpolarizability, which determines second-order nonlinear optical properties, is maximized, y is predicted to be zero [138]. [Pg.72]

These structure-function relationships provide extremely useful guidance for the future rational design of molecules and polymers with even higher optical nonlinearities. For non-centrosymmetric molecules such as 95, very high first hyperpolarizabilities /3 that determine the second-order nonfinear optical properties were also measured [140]. [Pg.73]

Some quinones, having the ability to form intra- and/or intermolecular hydrogen bonds, exhibit high molecular hyperpolarizability and are third-order nonlinear optical (NLO) materials. Compound 39 has a %(3) of 5 x 10 11 esu at 1.9 pm, and is a third-order NLO material.23 The optoelectric properties of quinoid compounds correlate with their structures in crystals or on thin films.23... [Pg.64]

Based on the fundamental dipole moment concepts of mesomeric moment and interaction moment, models to explain the enhanced optical nonlinearities of polarized conjugated molecules have been devised. The equivalent internal field (EIF) model of Oudar and Chemla relates the j8 of a molecule to an equivalent electric field ER due to substituent R which biases the hyperpolarizabilities (28). In the case of donor-acceptor systems anomalously large nonlinearities result as a consequence of contributions from intramolecular charge-transfer interaction (related to /xjnt) and expressions to quantify this contribution have been obtained (29). Related treatments dealing with this problem have appeared one due to Levine and Bethea bearing directly on the EIF model (30), another due to Levine using spectroscopically derived substituent perturbations rather than dipole moment based data (31.) and yet another more empirical treatment by Dulcic and Sauteret involving reinforcement of substituent effects (32). [Pg.64]

The large molecular hyperpolarizability of the merocyanine chromophore (4,5) and the highly polar environment of the quasicrystals has prompted studies of the second order nonlinear optical properties of these materials (6). [Pg.136]

Experimental and theoretical results are presented for four nonlinear electrooptic and dielectric effects, as they pertain to flexible polymers. They are the Kerr effect, electric field induced light scattering, dielectric saturation and electric field induced second harmonic generation. We show the relationship between the dipole moment, polarizability, hyperpolarizability, the conformation of the polymer and these electrooptic and dielectric effects. We find that these effects are very sensitive to the details of polymer structure such as the rotational isomeric states, tacticity, and in the case of a copolymer, the comonomer composition. [Pg.235]

The nonlinear optical and dielectric properties of polymers find increasing use in devices, such as cladding and coatings for optical fibres, piezoelectric and optical fibre sensors, frequency doublers, and thin films for integrated optics applications. It is therefore important to understand the dielectric, optical and mechanical response of polymeric materials to optimize their usage. The parameters that are important to evaluate these properties of polymers are their dipole moment polarizability a, hyperpolarizabilities 0... [Pg.235]

We have shown in this paper the relationships between the fundamental electrical parameters, such as the dipole moment, polarizability and hyperpolarizability, and the conformations of flexible polymers which are manifested in a number of their electrooptic and dielectric properties. These include the Kerr effect, dielectric polarization and saturation, electric field induced light scattering and second harmonic generation. Our experimental and theoretical studies of the Kerr effect show that it is very useful for the characterization of polymer microstructure. Our theoretical studies of the NLDE, EFLS and EFSHG also show that these effects are potentially useful, but there are very few experimental results reported in the literature with which to test the calculations. More experimental studies are needed to further our understanding of the nonlinear electrooptic and dielectric properties of flexible polymers. [Pg.243]

The proportionality constants a and (> are the linear polarizability and the second-order polarizability (or first hyperpolarizability), and x(1) and x<2) are the first- and second-order susceptibility. The quadratic terms (> and x<2) are related by x(2) = (V/(P) and are responsible for second-order nonlinear optical (NLO) effects such as frequency doubling (or second-harmonic generation), frequency mixing, and the electro-optic effect (or Pockels effect). These effects are schematically illustrated in Figure 9.3. In the remainder of this chapter, we will primarily focus on the process of second-harmonic generation (SHG). [Pg.524]

For obtaining the information on fabrication of noncentrosymmetric LB films with highly efficient second-order optical nonlinearity, six azobenzene-linked amphiphiles were synthesized as a model compound, and their molecular hyperpolarizabilities (3, monolayer-formation at the air-water interface, and molecular orientation and second-order susceptibilities of the azobenzene-linked amphiphiles LB films were evaluated. The molecular structures of the azobenzene-linked amphiphiles are shown in Fig.2. [Pg.299]


See other pages where Nonlinear hyperpolarizability is mentioned: [Pg.419]    [Pg.31]    [Pg.419]    [Pg.31]    [Pg.257]    [Pg.33]    [Pg.10]    [Pg.114]    [Pg.147]    [Pg.114]    [Pg.114]    [Pg.223]    [Pg.139]    [Pg.140]    [Pg.147]    [Pg.149]    [Pg.349]    [Pg.111]    [Pg.325]    [Pg.625]    [Pg.27]    [Pg.28]    [Pg.53]    [Pg.89]    [Pg.105]    [Pg.194]    [Pg.208]    [Pg.16]    [Pg.530]    [Pg.531]    [Pg.288]    [Pg.298]    [Pg.302]    [Pg.315]    [Pg.171]    [Pg.336]   
See also in sourсe #XX -- [ Pg.190 , Pg.250 , Pg.251 ]




SEARCH



Hyperpolarizabilities

Hyperpolarizability

© 2024 chempedia.info